Optimizing the electrochemical activity and understanding the reaction mechanism of Li3.27FeII0.19FeIII0.81V(PO4)3 cathode material for lithium-ion batteries
57Fe Mӧssbauer spectroscopy; Energy storage; EXAFS; Lithium-ion batteries; Magnetic measurements; Phosphate; 57fe mӧssbaue spectroscopy; Cathodes material; Cost effective; Cost-efficient; Eco-friendly; Electrochemical activities; Reaction mechanism; Structure materials; Type structures; Renewable Energy, Sustainability and the Environment; Energy Engineering and Power Technology; Physical and Theoretical Chemistry; Electrical and Electronic Engineering
Abstract :
[en] This work reports the synthesis of a NaSICON-type structure material, a cost-efficient electrode for lithium-ion batteries, by the substitution of vanadium with cost-effective and eco-friendly iron. Li3.27FeII0.19FeIII0.81V(PO4)3 was synthesized using sol-gel followed by a calcination at 450 °C under argon. XRD has confirmed the successful preparation of a compound isostructural to Li3V2(PO4)3 which crystallizes in a monoclinic structure with the P21/c space group. The electrochemical properties of the novel phosphate were explored at different cut-off voltage windows (2.0–4.2 V, 2.8–4.5 V, 1.4–4.5 V, and 1.0–4.6 V), and using three electrolytes (LP30, LP40, and LP50). The best electrochemical performance was obtained at C/2 over 1.4–4.5 V voltage range and using LP40 delivering a reversible capacity of 150 mAh g−1 after 55 cycles with coulombic efficiency and capacity retention of 99% and 79%, respectively. 57Fe Mӧssbauer spectroscopy evidenced the contribution of Fe2+/Fe3+ redox couple upon the electrochemical reaction. Magnetic measurements revealed the oxidation of the transition metals during the charge process. XAFS study around V and Fe at K-edge revealed the successful substitution of Fe in the V site with a reorganization of the local structure at short and medium range order.
Disciplines :
Chemistry
Author, co-author :
Aziam, Hasna ; High Throughput Multidisciplinary Research Laboratory (HTMR), Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
Mahmoud, Abdelfattah ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie inorganique structurale et Chimie des matériaux inorganiques (LCIS-GreenMAT)
Mikhailova, Daria; Leibniz Institute for Solid State and Materials Research (IFW) Dresden e.V., Dresden, Germany
Harfouche, Messaoud ; Synchrotron-light for Experimental Science and Applications in the Middle East (SESAME), Allan, Jordan
Saadoune, Ismael; IMED, Faculty of Science and Technology- Cadi Ayyad University (UCA), Marrakesh, Morocco ; Applied Chemistry and Engineering Research Centre of Excellence (ACER CoE), Mohammed VI Polytechnic University, Ben Guerir, Morocco
Ben Youcef, Hicham ; High Throughput Multidisciplinary Research Laboratory (HTMR), Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco ; Applied Chemistry and Engineering Research Centre of Excellence (ACER CoE), Mohammed VI Polytechnic University, Ben Guerir, Morocco
Language :
English
Title :
Optimizing the electrochemical activity and understanding the reaction mechanism of Li3.27FeII0.19FeIII0.81V(PO4)3 cathode material for lithium-ion batteries
The authors are grateful to OCP group for the financial support through the programs APRD & APPHOS (Project: e-Store: 2016–2025). Prof. Aziam would like to thank Dr. Noha Sabi for performing EDS-mapping analysis.
Lyu, Y., Wu, X., Wang, K., Feng, Z., Cheng, T., Liu, Y., Wang, M., Chen, R., Xu, L., Zhou, J., Lu, Y., Guo, B., An overview on the advances of LiCoO2 cathodes for lithium-ion batteries. Adv. Energy Mater., 11, 2021, 2000982, 10.1002/aenm.202000982.
Aziam, H., Larhrib, B., Hakim, C., Sabi, N., Ben Youcef, H., Saadoune, I., Solid-state electrolytes for beyond lithium-ion batteries: a review. Renew. Sustain. Energy Rev., 167, 2022, 112694, 10.1016/j.rser.2022.112694.
Rui, X., Yan, Q., Skyllas-Kazacos, M., Lim, T.M., Li3V2(PO4)3 cathode materials for lithium-ion batteries: a review. J. Power Sources 258 (2014), 19–38, 10.1016/j.jpowsour.2014.01.126.
Padhi, A.K., Nanjundaswamy, K.S., Goodenough, J.B., Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries. J. Electrochem. Soc., 144, 1997, 1188, 10.1149/1.1837571.
Amine, K., Yasuda, H., Yamachi, M., Olivine LiCoPO4 as 4.8 V electrode material for lithium batteries. Electrochem. Solid State Lett., 3, 2000, 178, 10.1149/1.1390994.
Bezza, I., Kaus, M., Heinzmann, R., Yavuz, M., Knapp, M., Mangold, S., Doyle, S., Grey, C.P., Ehrenberg, H., Indris, S., Saadoune, I., Mechanism of the delithiation/lithiation process in LiFe0.4Mn0.6PO4: in situ and ex situ investigations on long-range and local structures. J. Phys. Chem. C 119 (2015), 9016–9024, 10.1021/jp513032r.
El Moutchou, S., Aziam, H., Mansori, M., Saadoune, I., Thermal stability of Lithium-ion batteries: case study of NMC811 and LFP cathode materials. Mater. Today: Proc., 51, 2022, 10.1016/j.matpr.2022.02.324 A1–A7.
Bezza, I., Aziam, H., Saadoune, I., On the LiFe1-xMnxPO4 (x = 0, 0.4, 0.6, 0.65, 1) olivine-type cathode materials for lithium ion batteries. Mater. Today: Proc. 51 (2022), 1913–1917, 10.1016/j.matpr.2021.02.648.
Gover, R.K.B., Burns, P., Bryan, A., Saidi, M.Y., Swoyer, J.L., Barker, J., LiVPO4F: a new active material for safe lithium-ion batteries. Solid State Ionics 177 (2006), 2635–2638, 10.1016/j.ssi.2006.04.049.
Okada, S., Ueno, M., Uebou, Y., Yamaki, J., Fluoride phosphate Li2CoPO4F as a high-voltage cathode in Li-ion batteries. J. Power Sources 146 (2005), 565–569, 10.1016/j.jpowsour.2005.03.149.
Nagahama, M., Hasegawa, N., Okada, S., High voltage performances of Li2NiPO4F cathode with dinitrile-based electrolytes. J. Electrochem. Soc., 157, 2010, A748, 10.1149/1.3417068.
Ye, T., Barpanda, P., Nishimura, S., Furuta, N., Chung, S.-C., Yamada, A., General observation of Fe3+/Fe2+ redox couple close to 4 V in partially substituted Li2FeP2O7 pyrophosphate solid-solution cathodes. Chem. Mater. 25 (2013), 3623–3629, 10.1021/cm401547z.
Rousse, G., Wurm, C., Morcrette, M., Rodriguez-Carvajal, J., Gaubicher, J., Masquelier, C., Crystal structure of a new vanadium(IV) diphosphate: VP2O7, prepared by lithium extraction from LiVP2O7. Int. J. Inorg. Mater. 3 (2001), 881–887, 10.1016/S1466-6049(01)00092-7.
Yamamoto, C., Doi, S., Nakanishi, M., Kobayashi, M., Inagaki, M., Goto, Y., Kato, J., Yamamoto, K., Kato, A., Kataoka, Y., In situ synchrotron radiation XRD and XAFS measurements of multilayer all-solid-state lithium-ion batteries using Li2CoP2O7 as a positive electrode material, meet. Abstr, MA2020–02, 2020, 911, 10.1149/MA2020-025911mtgabs.
Ohkawa, H., Yoshida, K., Saito, M., Uematsu, K., Toda, K., Sato, M., Improvement of discharge capacity of β-Fe2(SO4)3-type Li3V2(PO4)3 by stabilizing high temperature orthorhombic phase at room temperature. Chem. Lett. 28 (1999), 1017–1018, 10.1246/cl.1999.1017.
Ren, M., Zhou, Z., Li, Y., Gao, X.P., Yan, J., Preparation and electrochemical studies of Fe-doped Li3V2(PO4)3 cathode materials for lithium-ion batteries. J. Power Sources 162 (2006), 1357–1362, 10.1016/j.jpowsour.2006.08.008.
Masquelier, C., Croguennec, L., Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. Chem. Rev. 113 (2013), 6552–6591, 10.1021/cr3001862.
Morcrette, M., Wurm, C., Masquelier, C., On the way to the optimization of Li3Fe2(PO4)3 positive electrode materials. Solid State Sci. 4 (2002), 239–246, 10.1016/S1293-2558(01)01235-3.
Son, J.N., Kim, G.J., Kim, M.C., Kim, S.H., Aravindan, V., Lee, Y.G., Lee, Y.S., Carbon coated NASICON type Li3V2-xMx(PO4)3 (M=Mn, Fe and Al) materials with enhanced cyclability for Li-ion batteries. J. Electrochem. Soc., 160, 2012, A87, 10.1149/2.039301jes.
Liu, J., Zhao, Y., Huang, X., Zhou, Y., Lam, K., Yu, D.Y.W., Hou, X., NASICON-structured Na3MnTi(PO4)2.83F0.5 cathode with high energy density and rate performance for sodium-ion batteries. Chem. Eng. J., 435, 2022, 134839, 10.1016/j.cej.2022.134839.
Zheng, Y., Liu, J., Huang, D., Chen, H., Hou, X., Prepare and optimize NASICON-type Na4MnAl(PO4)3 as low cost cathode for sodium ion batteries. Surface. Interfac., 32, 2022, 102151, 10.1016/j.surfin.2022.102151.
Aziam, H., Darma, M.S.D., Knapp, M., Indris, S., Ehrenberg, H., Trouillet, V., Saadoune, I., New Li0.8M0.1Ti2(PO4)3 (M=Co, Mg) electrode materials for lithium-ion batteries: in operando X-ray diffraction and ex situ X-ray photoelectron spectroscopy investigations. Chemelectrochem 7 (2020), 3637–3645, 10.1002/celc.202000965.
Ni, Q., Zheng, L., Bai, Y., Liu, T., Ren, H., Xu, H., Wu, C., Lu, J., An extremely fast charging Li3V2(PO4)3 cathode at a 4.8 V cutoff voltage for Li-ion batteries. ACS Energy Lett. 5 (2020), 1763–1770, 10.1021/acsenergylett.0c00702.
Zhai, T., Zhao, M., Wang, D., Effect of Mn-doping on performance of Li3V2(PO4)3/C cathode material for lithium ion batteries. Trans. Nonferrous Metals Soc. China 21 (2011), 523–528, 10.1016/S1003-6326(11)60746-2.
Bini, M., Ferrari, S., Capsoni, D., Massarotti, V., Mn influence on the electrochemical behaviour of Li3V2(PO4)3 cathode material. Electrochim. Acta 56 (2011), 2648–2655, 10.1016/j.electacta.2010.12.011.
Huang, Z., Luo, P., Zheng, H., Design of Ti4+-doped Li3V2(PO4)3/C fibers for lithium energy storage. Ceram. Int. 48 (2022), 8325–8330, 10.1016/j.ceramint.2021.12.037.
Kim, S., Zhang, Z., Wang, S., Yang, L., Penner-Hahn, J.E., Deb, A., Electrochemical and structural investigation of Mg-doped Li3V(2-2x/3)Mgx(PO4)3. J. Power Sources 396 (2018), 491–497, 10.1016/j.jpowsour.2018.06.032.
Dai, C., Chen, Z., Jin, H., Hu, X., Synthesis and performance of Li3(V1−xMgx)2(PO4)3 cathode materials. J. Power Sources 195 (2010), 5775–5779, 10.1016/j.jpowsour.2010.02.081.
Chen, Q., Qiao, X., Wang, Y., Zhang, T., Peng, C., Yin, W., Liu, L., Electrochemical performance of Li3−xNaxV2(PO4)3/C composite cathode materials for lithium ion batteries. J. Power Sources 201 (2012), 267–273, 10.1016/j.jpowsour.2011.10.133.
Kee, Y., Dimov, N., Kobayashi, E., Kitajou, A., Okada, S., Structural and electrochemical properties of Fe- and Al-doped Li3V2(PO4)3 for all-solid-state symmetric lithium ion batteries prepared by spray-drying-assisted carbothermal method. Solid State Ionics 272 (2015), 138–143, 10.1016/j.ssi.2015.01.006.
Zhang, L.-L., Zhang, X., Sun, Y.-M., Luo, W., Hu, X.-L., Wu, X.-J., Huang, Y.-H., Improved electrochemical performance in Li3V2(PO4)3 promoted by niobium-incorporation. J. Electrochem. Soc., 158, 2011, A924, 10.1149/1.3598175.
Ravel, B., Newville, M., ATHENA, artemis, hephaestus: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12 (2005), 537–541, 10.1107/S0909049505012719.
Ressler, T., WinXAS: a program for X-ray absorption spectroscopy data analysis under MS-windows. J. Synchrotron Radiat. 5 (1998), 118–122, 10.1107/S0909049597019298.
Zhang, L.-L., Duan, S., Peng, G., Liang, G., Zou, F., Huang, Y.-H., Novel synthesis of low carbon-coated Li3V2(PO4)3 cathode material for lithium-ion batteries. J. Alloys Compd. 570 (2013), 61–64, 10.1016/j.jallcom.2013.03.189.
Masquelier, C., Padhi, A.K., Nanjundaswamy, K.S., Goodenough, J.B., New cathode materials for rechargeable lithium batteries: the 3-D framework structures Li3Fe2(xo4)3(X=P, as). J. Solid State Chem. 135 (1998), 228–234, 10.1006/jssc.1997.7629.
Rui, X.H., Yesibolati, N., Chen, C.H., Li3V2(PO4)3/C composite as an intercalation-type anode material for lithium-ion batteries. J. Power Sources 196 (2011), 2279–2282, 10.1016/j.jpowsour.2010.09.024.
Sabi, N., Sarapulova, A., Indris, S., Dsoke, S., Zhao, Z., Dahbi, M., Ehrenberg, H., Saadoune, I., Evidence of a pseudo-capacitive behavior combined with an insertion/extraction reaction upon cycling of the positive electrode material P2-NaxCo0.9Ti0.1O2 for sodium-ion batteries. Chemelectrochem 6 (2019), 892–903, 10.1002/celc.201801870.
Bodart, J., Eshraghi, N., Sougrati, M.T., Boschini, F., Lippens, P.-E., Vertruyen, B., Mahmoud, A., From Na2FePO4F/CNT to NaKFePO4F/CNT as advanced cathode material for K-ion batteries. J. Power Sources, 555, 2023, 232410, 10.1016/j.jpowsour.2022.232410.
Mahmoud, A., Karegeya, C., Sougrati, M.T., Bodart, J., Vertruyen, B., Cloots, R., Lippens, P.-E., Boschini, F., Electrochemical mechanism and effect of carbon nanotubes on the electrochemical performance of Fe1.19(PO4)(OH)0.57(H2O)0.43 cathode material for Li-ion batteries. ACS Appl. Mater. Interfaces 10 (2018), 34202–34211, 10.1021/acsami.8b10663.
Aziam, H., Indris, S., Ben Youcef, H., Witte, R., Sarapulova, A., Ehrenberg, H., Saadoune, I., The first lithiation/delithiation mechanism of MFeOPO4 (M: Co, Ni) as revealed by 57Fe Mössbauer spectroscopy. J. Alloys Compd., 906, 2022, 164373, 10.1016/j.jallcom.2022.164373.