[en] Incoherent scattering of photons off two remote atoms with a -level structure is used as a basic Young-type interferometer to herald long-lived entanglement of an arbitrary degree. The degree of entanglement, as measured by the concurrence, is found to be tunable by two easily accessible experimental parameters. Fixing one of them to certain values unveils an analog to the Malus’ law. An estimate of the variation in the degree of entanglement due to uncertainties in an experimental realization is given.
Disciplines :
Physics
Author, co-author :
Schilling, U.; Université de Liège - ULiège > Département de physique > Physique des atomes froids
L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, England, 1995).
M. Nielsen and I. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, England, 2000).
M. Jakob and J. Bergou, e-print arXiv:quant-ph/0302075.
M. Jakob and J. A. Bergou, Phys. Rev. A 76, 052107 (2007). 10.1103/PhysRevA.76.052107
T. Scholak, F. Mintert, and C. A. Müller, Europhys. Lett. 83, 60006 (2008). 10.1209/0295-5075/83/60006
S. Bose, P. L. Knight, M. B. Plenio, and V. Vedral, Phys. Rev. Lett. 83, 5158 (1999). 10.1103/PhysRevLett.83.5158
C. Cabrillo, J. I. Cirac, P. García-Fernández, and P. Zoller, Phys. Rev. A 59, 1025 (1999). 10.1103/PhysRevA.59.1025
L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, Nature (London) 414, 413 (2001). 10.1038/35106500
C. Skornia, J. von Zanthier, G. S. Agarwal, E. Werner, and H. Walther, Phys. Rev. A 64, 063801 (2001). 10.1103/PhysRevA.64.063801
C. Simon and W. T. M. Irvine, Phys. Rev. Lett. 91, 110405 (2003). 10.1103/PhysRevLett.91.110405
L.-M. Duan and H. J. Kimble, Phys. Rev. Lett. 90, 253601 (2003). 10.1103/PhysRevLett.90.253601
D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L.-M. Duan, and C. Monroe, Nature (London) 449, 68 (2007). 10.1038/nature06118
C. Thiel, J. von Zanthier, T. Bastin, E. Solano, and G. S. Agarwal, Phys. Rev. Lett. 99, 193602 (2007). 10.1103/PhysRevLett.99.193602
T. Bastin, C. Thiel, J. von Zanthier, L. Lamata, E. Solano, and G. S. Agarwal, Phys. Rev. Lett. 102, 053601 (2009). 10.1103/PhysRevLett.102.053601
Q. A. Turchette, C. S. Wood, B. E. King, C. J. Myatt, D. Leibfried, W. M. Itano, C. Monroe, and D. J. Wineland, Phys. Rev. Lett. 81, 3631 (1998). 10.1103/PhysRevLett.81.3631
E. Solano, R. L. de Matos Filho, and N. Zagury, Phys. Rev. A 59, R2539 (1999) 10.1103/PhysRevA.59.R2539
E. Solano, R. L. de Matos Filho, and N. Zagury, Phys. Rev. A 61, 029903 (E) (2000). 10.1103/PhysRevA.61.029903
H. Häffner, W. Hänsel, C. F. Roos, J. Benhelm, D. Chek-al-kar, M. Chwalla, T. Körber, U. D. Rapol, M. Riebe, P. O. Schmidt, C. Becher, O. Gühne, W. Dür, and R. Blatt, Nature (London) 438, 643 (2005). 10.1038/nature04279
D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, Nature (London) 438, 639 (2005). 10.1038/nature04251
E. Hagley, X. Maître, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, Phys. Rev. Lett. 79, 1 (1997). 10.1103/PhysRevLett.79.1
S.-B. Zheng and G.-C. Guo, Phys. Rev. Lett. 85, 2392 (2000). 10.1103/PhysRevLett.85.2392
B. Julsgaard, A. Kozhekin, and E. S. Polzik, Nature (London) 413, 400 (2001). 10.1038/35096524
S. Osnaghi, P. Bertet, A. Auffeves, P. Maioli, M. Brune, J. M. Raimond, and S. Haroche, Phys. Rev. Lett. 87, 037902 (2001). 10.1103/PhysRevLett.87. 037902
D. N. Matsukevich, T. Chanelière, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, Phys. Rev. Lett. 96, 030405 (2006). 10.1103/PhysRevLett.96.030405
P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, Phys. Rev. Lett. 75, 4337 (1995). 10.1103/PhysRevLett.75.4337
N. Kiesel, C. Schmid, G. Tóth, E. Solano, and H. Weinfurter, Phys. Rev. Lett. 98, 063604 (2007). 10.1103/PhysRevLett.98.063604
U. Eichmann, J. C. Bergquist, J. J. Bollinger, J. M. Gilligan, W. M. Itano, D. J. Wineland, and M. G. Raizen, Phys. Rev. Lett. 70, 2359 (1993). 10.1103/PhysRevLett.70.2359
W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998). 10.1103/PhysRevLett.80. 2245
G. S. Agarwal, J. von Zanthier, C. Skornia, and H. Walther, Phys. Rev. A 65, 053826 (2002). 10.1103/PhysRevA.65.053826
J. Volz, M. Weber, D. Schlenk, W. Rosenfeld, J. Vrana, K. Saucke, C. Kurtsiefer, and H. Weinfurter, Phys. Rev. Lett. 96, 030404 (2006). 10.1103/PhysRevLett.96.030404
S. Gerber, D. Rotter, M. Hennrich, R. Blatt, F. Rohde, C. Schuck, M. Almendros, R. Gehr, F. Dubin, and J. Eschner, New J. Phys. 11, 013032 (2009). 10.1088/1367-2630/11/1/013032
Note that Eq. 7 only holds if V12 and cos δ21 are not simultaneously equal to 1 and -1, respectively, since in this case no two-photon signal is detected [cf. Eq. 12] so that the projection described in Eq. 5 does not occur.
Eugene Hecht, Optics (Addison Wesley, San Francisco, California, 2002).
F. Tamburini, B. A. Bassett, and C. Ungarelli, Phys. Rev. A 78, 012114 (2008). 10.1103/PhysRevA.78.012114