coalescence; colorimetric sensing; fractal structures; peptides; sensor-array silver nanomaterials; Silver; Peptides; Peptide Hydrolases; Biomarkers; Humans; Silver/chemistry; Colorimetry; Limit of Detection; Fractals; SARS-CoV-2; Metal Nanoparticles/chemistry; COVID-19/diagnosis; Amino-acids; Color changes; Diffusion limited aggregation; Disease biomarker; Sensor-array silver nanomaterial; Sensors array; Visual detection; COVID-19; Metal Nanoparticles; Materials Science (all); Engineering (all); Physics and Astronomy (all); General Physics and Astronomy; General Engineering; General Materials Science
Abstract :
[en] We report the peptide-programmed fractal assembly of silver nanoparticles (AgNPs) in a diffusion-limited aggregation (DLA) mode, and this change in morphology generates a significant color change. We show that peptides with specific repetitions of defined amino acids (i.e., arginine, histidine, or phenylalanine) can induce assembly and coalescence of the AgNPs (20 nm) into a hyperbranched structure (AgFSs) (∼2 μm). The dynamic process of this assembly was systematically investigated, and the extinction of the nanostructures can be modulated from 400 to 600 nm by varying the peptide sequences and molar ratio. According to this rationale, two strategies of SARS-CoV-2 detection were investigated. The activity of the main protease (Mpro) involved in SARS-CoV-2 was validated with a peptide substrate that can bridge the AgNPs after the proteolytic cleavage. A sub-nanomolar limit of detection (0.5 nM) and the capacity to distinguish by the naked eye in a wide concentration range (1.25-30 nM) were achieved. Next, a multichannel sensor-array based on multiplex peptides that can visually distinguish SARS-CoV-2 proteases from influenza proteases in doped human samples was investigated.
Disciplines :
Chemistry
Author, co-author :
Retout, Maurice ; Department of NanoEngineering, Materials Science and Engineering Program, University of California, San Diego, United States
Mantri, Yash ; Department of Bioengineering, University of California, San Diego, United States
Jin, Zhicheng ; Department of NanoEngineering, Materials Science and Engineering Program, University of California, San Diego, United States
Zhou, Jiajing ; Department of NanoEngineering, Materials Science and Engineering Program, University of California, San Diego, United States
Noël, Grégoire ; Université de Liège - ULiège > Département GxABT > Gestion durable des bio-agresseurs
Donovan, Brian; Department of NanoEngineering, Materials Science and Engineering Program, University of California, San Diego, United States
Yim, Wonjun ; Department of NanoEngineering, Materials Science and Engineering Program, University of California, San Diego, United States
Jokerst, Jesse V ; Department of NanoEngineering, Materials Science and Engineering Program, University of California, San Diego, United States
Language :
English
Title :
Peptide-Induced Fractal Assembly of Silver Nanoparticles for Visual Detection of Disease Biomarkers.
J. Jokerst acknowledges funding from NIH under grants R01DE031114, R21AG0657776-01S1, R21AI157957, and DP2HL137187-S1. We also acknowledge infrastructure support under NIH S10 OD023555. M.R. acknowledges the Wallonie-Bruxelles International (WBI) of the Fédération Wallonie-Bruxelles for financial support. Figures 1, 4, and 5 were made using BioRender.com.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Germain, M. E.; Knapp, M. J. Optical Explosives Detection: From Color Changes to Fluorescence Turn-On. Chem. Soc. Rev. 2009, 38, 2543-2555, 10.1039/b809631g
Zhang, Y.; Jiao, J.; Wei, Y.; Wang, D.; Yang, C.; Xu, Z. Plasmonic Colorimetric Biosensor for Sensitive Exosome Detection via Enzyme-Induced Etching of Gold Nanobipyramid@MnO2Nanosheet Nanostructures. Anal. Chem. 2020, 92, 15244-15252, 10.1021/acs.analchem.0c04136
Moon, J.; Kwon, H. J.; Yong, D.; Lee, I. C.; Kim, H.; Kang, H.; Lim, E. K.; Lee, K. S.; Jung, J.; Park, H. G.; Kang, T. Colorimetric Detection of SARS-CoV-2 and Drug-Resistant PH1N1 Using CRISPR/DCas9. ACS Sens. 2020, 5, 4017-4026, 10.1021/acssensors.0c01929
Saunders, A.; Zarzar, L. Structural Coloration from Total Internal Reflection at Microscale Concave Surfaces and Use for Sensing in Complex Droplets. Proc. SPIE 2020, 11292, 10.1117/12.2545151
Medintz, I. L.; Clapp, A. R.; Mattoussi, H.; Goldman, E. R.; Fisher, B.; Mauro, J. M. Self-Assembled Nanoscale Biosensors Based on Quantum Dot FRET Donors. Nat. Mater. 2003, 2, 630-638, 10.1038/nmat961
Wilson, R. The Use of Gold Nanoparticles in Diagnostics and Detection. Chem. Soc. Rev. 2008, 37, 2028-2045, 10.1039/b712179m
Huang, X.; Liu, Y.; Yung, B.; Xiong, Y.; Chen, X. Nanotechnology-Enhanced No-Wash Biosensors for in Vitro Diagnostics of Cancer. ACS Nano 2017, 11, 5238-5292, 10.1021/acsnano.7b02618
Zhou, W.; Gao, X.; Liu, D.; Chen, X. Gold Nanoparticles for in Vitro Diagnostics. Chem. Rev. 2015, 115, 10575-10636, 10.1021/acs.chemrev.5b00100
Cordeiro, M.; Carlos, F. F.; Pedrosa, P.; Lopez, A.; Baptista, P. V. Gold Nanoparticles for Diagnostics: Advances towards Points of Care. Diagnostics 2016, 6, 43, 10.3390/diagnostics6040043
Jain, P. K.; Eustis, S.; El-Sayed, M. A. Plasmon Coupling in Nanorod Assemblies: Optical Absorption, Discrete Dipole Approximation Simulation, and Exciton-Coupling Model. J. Phys. Chem. B 2006, 110, 18243-18253, 10.1021/jp063879z
Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B 2003, 107, 668-677, 10.1021/jp026731y
Jain, P. K.; Huang, X.; El-Sayed, I. H.; El-Sayed, M. A. Review of Some Interesting Surface Plasmon Resonance-Enhanced Properties of Noble Metal Nanoparticles and Their Applications to Biosystems. Plasmonics 2007, 2, 107-118, 10.1007/s11468-007-9031-1
Retout, M.; Jabin, I.; Bruylants, G. Synthesis of Ultra-Stable and Bioconjugable Ag, Au and Bimetallic Ag_Au Nanoparticles Coated with Calix[4]Arenes. ACS Omega 2021, 6, 19675-19684, 10.1021/acsomega.1c02327
Xu, S.; Jiang, L.; Liu, Y.; Liu, P.; Wang, W.; Luo, X. A Morphology-Based Ultrasensitive Multicolor Colorimetric Assay for Detection of Blood Glucose by Enzymatic Etching of Plasmonic Gold Nanobipyramids. Anal. Chim. Acta 2019, 1071, 53-58, 10.1016/j.aca.2019.04.053
Wang, H.; Rao, H.; Luo, M.; Xue, X.; Xue, Z.; Lu, X. Noble Metal Nanoparticles Growth-Based Colorimetric Strategies: From Monocolorimetric to Multicolorimetric Sensors. Coord. Chem. Rev. 2019, 398, 113003, 10.1016/j.ccr.2019.06.020
Gao, Z.; Deng, K.; Wang, X. D.; Miró, M.; Tang, D. High-Resolution Colorimetric Assay for Rapid Visual Readout of Phosphatase Activity Based on Gold/Silver Core/Shell Nanorod. ACS Appl. Mater. Interfaces 2014, 6, 18243-18250, 10.1021/am505342r
Wu, C.; Zhang, R.; Du, W.; Cheng, L.; Liang, G. Alkaline Phosphatase-Triggered Self-Assembly of Near-Infrared Nanoparticles for the Enhanced Photoacoustic Imaging of Tumors. Nano Lett. 2018, 18, 7749-7754, 10.1021/acs.nanolett.8b03482
Alafeef, M.; Moitra, P.; Dighe, K.; Pan, D. RNA-Extraction-Free Nano-Amplified Colorimetric Test for Point-of-Care Clinical Diagnosis of COVID-19. Nat. Protoc. 2021, 16, 3141-3162, 10.1038/s41596-021-00546-w
Retout, M.; Valkenier, H.; Triffaux, E.; Doneux, T.; Bartik, K.; Bruylants, G. Rapid and Selective Detection of Proteins by Dual Trapping Using Gold Nanoparticles Functionalized with Peptide Aptamers. ACS Sens. 2016, 1, 929-933, 10.1021/acssensors.6b00229
Hu, T.; Lu, S.; Chen, C.; Sun, J.; Yang, X. Colorimetric Sandwich Immunosensor for Aβ(1-42) Based on Dual Antibody-Modified Gold Nanoparticles. Sens. Actuators, B 2017, 243, 792-799, 10.1016/j.snb.2016.12.052
Lesniewski, A.; Los, M.; Jonsson-NiedzioÌåka, M.; Krajewska, A.; Szot, K.; Los, J. M.; Niedziolka-Jonsson, J. Antibody Modified Gold Nanoparticles for Fast and Selective, Colorimetric T7 Bacteriophage Detection. Bioconjugate Chem. 2014, 25, 644-648, 10.1021/bc500035y
Jazayeri, M. H.; Amani, H.; Pourfatollah, A. A.; Pazoki-Toroudi, H.; Sedighimoghaddam, B. Various Methods of Gold Nanoparticles (GNPs) Conjugation to Antibodies. Sensing and Bio-Sensing Research 2016, 9, 17-22, 10.1016/j.sbsr.2016.04.002
Guo, L.; Xu, Y.; Ferhan, A. R.; Chen, G.; Kim, D. H. Oriented Gold Nanoparticle Aggregation for Colorimetric Sensors with Surprisingly High Analytical Figures of Merit. J. Am. Chem. Soc. 2013, 135, 12338-12345, 10.1021/ja405371g
Sessler, J. L.; Jayawickramarajah, J. Functionalized Base-Pairs: Versatile Scaffolds for Self-Assembly. Chem. Commun. 2005, 15, 1939-1949, 10.1039/b418526a
Sun, X.; Hagner, M. Novel Preparation of Snowflake-like Dendritic Nanostructures of Ag or Au at Room Temperature via a Wet-Chemical Route. Langmuir 2007, 23, 9147-9150, 10.1021/la701519x
Gole, M. T.; Yin, Z.; Wang, M. C.; Lin, W.; Zhou, Z.; Leem, J.; Takekuma, S.; Murphy, C. J.; Nam, S. W. Large Scale Self-Assembly of Plasmonic Nanoparticles on Deformed Graphene Templates. Sci. Rep. 2021, 11, 1-9, 10.1038/s41598-021-91697-z
Singh, A.; Khatun, S.; Gupta, A. N. Anisotropy: Versus Fluctuations in the Fractal Self-Assembly of Gold Nanoparticles. Soft Matter 2020, 16, 7778-7788, 10.1039/D0SM00485E
Li, X.; Lenhart, J. J.; Walker, H. W. Aggregation Kinetics and Dissolution of Coated Silver Nanoparticles. Langmuir 2012, 28, 1095-1104, 10.1021/la202328n
He, D.; Bligh, M. W.; Waite, T. D. Effects of Aggregate Structure on the Dissolution Kinetics of Citrate-Stabilized Silver Nanoparticles. Environ. Sci. Technol. 2013, 47, 9148-9156, 10.1021/es400391a
Doyen, M.; Goole, J.; Bartik, K.; Bruylants, G. Amino Acid Induced Fractal Aggregation of Gold Nanoparticles: Why and How. J. Colloid Interface Sci. 2016, 464, 60-166, 10.1016/j.jcis.2015.11.017
Kim, W.; Safonov, V. P.; Shalaev, V. M.; Armstrong, R. L. Fractals in Microcavities: Giant Coupled, Multiplicative Enhancement of Optical Responses. Phys. Rev. Lett. 1999, 82, 4811-4814, 10.1103/PhysRevLett.82.4811
Shalaev, V. M.; Markel, V. A.; Poliakov, E. Y.; Armstrong, R. L.; Safonov, V. P.; Sarychev, A. K. Non Linear Optical Phenomena in Nanostructured Fractal Materials. J. Nonlinear Opt. Phys. Mater. 1998, 7, 131-152, 10.1142/S0218863598000119
Parab, H.; Jung, C.; Woo, M. A.; Park, H. G. An Anisotropic Snowflake-like Structural Assembly of Polymer-Capped Gold Nanoparticles. J. Nanopart. Res. 2011, 13, 2173-2180, 10.1007/s11051-010-9975-5
Cheng, Z.; Qiu, Y.; Li, Z.; Yang, D.; Ding, S.; Cheng, G.; Hao, Z.; Wang, Q. Fabrication of Silver Dendrite Fractal Structures for Enhanced Second Harmonic Generation and Surface-Enhanced Raman Scattering. Opt. Mater. Express 2019, 9, 860-869, 10.1364/OME.9.000860
Ansari, J. R.; Singh, N.; Ahmad, R.; Chattopadhyay, D.; Datta, A. Controlling Self-Assembly of Ultra-Small Silver Nanoparticles: Surface Enhancement of Raman and Fluorescent Spectra. Opt. Mater. 2019, 94, 138-147, 10.1016/j.optmat.2019.05.023
Noroozi, M.; Zakaria, A.; Moksin, M. M.; Wahab, Z. A.; Abedini, A. Green Formation of Spherical and Dendritic Silver Nanostructures under Microwave Irradiation without Reducing Agent. Int. J. Mol. Sci. 2012, 13, 8086-8096, 10.3390/ijms13078086
Ziegler, C.; Eychmüller, A. Seeded Growth Synthesis of Uniform Gold Nanoparticles with Diameters of 15-300 Nm. J. Phys. Chem. C 2011, 115, 4502-4506, 10.1021/jp1106982
Moore, C.; Wing, R.; Pham, T.; Jokerst, J. V. Multispectral Nanoparticle Tracking Analysis for the Real-Time and Label-Free Characterization of Amyloid-β Self-Assembly in Vitro. Anal. Chem. 2020, 92, 11590-11599, 10.1021/acs.analchem.0c01048
Röder, H.; Bromann, K.; Brune, H.; Kern, K. Diffusion-Limited Aggregation with Active Edge Diffusion. Phys. Rev. Lett. 1995, 74, 3217-3220, 10.1103/PhysRevLett.74.3217
Tai, J. T.; Lai, C. S.; Ho, H. C.; Yeh, Y. S.; Wang, H. F.; Ho, R. M.; Tsai, D. H. Protein-Silver Nanoparticle Interactions to Colloidal Stability in Acidic Environments. Langmuir 2014, 30, 12755-12764, 10.1021/la5033465
Magdassi, S.; Grouchko, M.; Berezin, O.; Kamyshny, A. Triggering the Sintering of Silver Nanoparticles at Room Temperature. ACS Nano 2010, 4, 1943-1948, 10.1021/nn901868t
Grouchko, M.; Popov, I.; Uvarov, V.; Magdassi, S.; Kamyshny, A. Coalescence of Silver Nanoparticles at Room Temperature: Unusual Crystal Structure Transformation and Dendrite Formation Induced by Self-Assembly. Langmuir 2009, 25, 2501-2503, 10.1021/la803843k
Yu, P.; Huang, J.; Tang, J. Observation of Coalescence Process of Silver Nanospheres during Shape Transformation to Nanoprisms. Nanoscale Res. Lett. 2012, 7, 1-7, 10.1007/s11671-010-9808-6
Park, J. W.; Shumaker-Parry, J. S. Strong Resistance of Citrate Anions on Metal Nanoparticles to Desorption under Thiol Functionalization. ACS Nano 2015, 9, 1665-1682, 10.1021/nn506379m
Tan, Y. N.; Yang, J.; Lee, J. Y.; Wang, D. I. C. Mechanistic Study on the Bis(p-Sulfonatophenyl)Phenylphosphine Synthesis of Monometallic Pt Hollow Nanoboxes Using Ag*-Pt Core-Shell Nanocubes as Sacrificial Templates. J. Phys. Chem. C 2007, 111, 14084-14090, 10.1021/jp0741049
Jin, B.; Sushko, M. L.; Liu, Z.; Jin, C.; Tang, R. In Situ Liquid Cell TEM Reveals Bridge-Induced Contact and Fusion of Au Nanocrystals in Aqueous Solution. Nano Lett. 2018, 18, 6551-6556, 10.1021/acs.nanolett.8b03139
Pizzi, A.; Dichiarante, V.; Terraneo, G.; Metrangolo, P. Crystallographic Insights into the Self-Assembly of KLVFF Amyloid-Beta Peptides. Biopolymers 2017, 110, 23088
Komarova, N. L.; Schang, L. M.; Wodarz, D. Patterns of the COVID-19 Pandemic Spread around the World: Exponential versus Power Laws. J. R. Soc., Interface 2020, 17, 20200518, 10.1098/rsif.2020.0518
Tang, Y.; Schmitz, J. E.; Persing, D. H.; Stratton, C. W. Laboratory Diagnosis of COVID-19: Current Issues and Challenges. J. Clin. Microbiol. 2020, 58, 1-9, 10.1128/JCM.00512-20
Ali, I.; Alharbi, O. M. L. COVID-19: Disease, Management, Treatment, and Social Impact. Sci. Total Environ. 2020, 728, 138861, 10.1016/j.scitotenv.2020.138861
Moore, C.; Borum, R. M.; Mantri, Y.; Xu, M.; Fajtová, P.; O'Donoghue, A. J.; Jokerst, J. V. Activatable Carbocyanine Dimers for Photoacoustic and Fluorescent Detection of Protease Activity. ACS Sens. 2021, 6, 2356-2365, 10.1021/acssensors.1c00518
Jin, Z.; Mantri, Y.; Retout, M.; Cheng, Y.; Zhou, J.; Jorns, A.; Fajtova, P.; Yim, W.; Moore, C.; Xu, M.; Creyer, M.; Borum, R.; Zhou, J.; Wu, Z.; He, T.; Penny, W.; O'Donoghue, A.; Jokerst, J. A Charge-Switchable Zwitterionic Peptide for Rapid Detection of SARS-CoV-2 Main Protease. Angew. Chem., Int. Ed. 2022, 61, e202112995, 10.1002/anie.202112995
V'kovski, P.; Kratzel, A.; Steiner, S.; Stalder, H.; Thiel, V. Coronavirus Biology and Replication: Implications for SARS-CoV-2. Nat. Rev. Microbiol. 2021, 19, 155-170, 10.1038/s41579-020-00468-6
De, M.; Rana, S.; Akpinar, H.; Miranda, O. R.; Arvizo, R. R.; Bunz, U. H. F.; Rotello, V. M. Sensing of Proteins in Human Serum Using Conjugates of Nanoparticles and Green Fluorescent Protein. Nat. Chem. 2009, 1, 461-465, 10.1038/nchem.334
You, C. C.; Miranda, O. R.; Gider, B.; Ghosh, P. S.; Kim, I. B.; Erdogan, B.; Krovi, S. A.; Bunz, U. H. F.; Rotello, V. M. Detection and Identification of Proteins Using Nanoparticle-Fluorescent Polymer "chemical Nose" Sensors. Nat. Nanotechnol. 2007, 2, 318-323, 10.1038/nnano.2007.99
Fletcher, R.; Reeves, C. M. The Use of Multiple Measurements in Taxonomic Problems. Ann. Hum. Genet. 1936, 7, 179-188
Kailasa, S. K.; Mehta, V. N.; Koduru, J. R.; Basu, H.; Singhal, R. K.; Murthy, Z. V. P.; Park, T. J. An Overview of Molecular Biology and Nanotechnology Based Analytical Methods for the Detection of SARS-CoV-2: Promising Biotools for the Rapid Diagnosis of COVID-19. Analyst 2021, 146, 1489-1513, 10.1039/D0AN01528H
Qiu, G.; Gai, Z.; Tao, Y.; Schmitt, J.; Kullak-Ublick, G. A.; Wang, J. Dual-Functional Plasmonic Photothermal Biosensors for Highly Accurate Severe Acute Respiratory Syndrome Coronavirus 2 Detection. ACS Nano 2020, 14, 5268-5277, 10.1021/acsnano.0c02439
Moitra, P.; Alafeef, M.; Alafeef, M.; Alafeef, M.; Dighe, K.; Frieman, M. B.; Pan, D.; Pan, D.; Pan, D. Selective Naked-Eye Detection of SARS-CoV-2 Mediated by N Gene Targeted Antisense Oligonucleotide Capped Plasmonic Nanoparticles. ACS Nano 2020, 14, 7617-7627, 10.1021/acsnano.0c03822
Venables, W. N., Ripley, B. D. Random and Mixed Effects. In Modern Applied Statistics with S; Springer: New York, 2002; pp 271-300.
Wickham, H. Ggplot2. In Elegant Graphics for Data Analysis; Springer: New York, 2009; p 35.
Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; Kuhn, M.; Pedersen, T.; Miller, E.; Bache, S.; Müller, K.; Ooms, J.; Robinson, D.; Seidel, D.; Spinu, V. et al. Welcome to the Tidyverse. Journal of Open Source Software 2019, 4, 1686, 10.21105/joss.01686
Kuhn, L.; Page, K.; Ward, J.; Worrall-Carter, L. The Process and Utility of Classification and Regression Tree Methodology in Nursing Research. Journal of Advanced Nursing 2014, 70, 1276-1286, 10.1111/jan.12288
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.