[en] The tight correlations found between the mass of supermassive black holes and the luminosities, stellar masses and velocity dispersions of their host galaxies are often interpreted as a sign of their co-evolution. Studying these correlations across redshift provides a powerful insight into the evolutionary path followed by the quasar and its host galaxy. While the mass of the black hole is accessible from single-epoch spectra, measuring the mass of its host galaxy is challenging as the active nucleus largely overshines its host. Here we present a technique to probe quasar–host relations beyond the local Universe with strong gravitational lensing, hence overcoming the use of stellar population models or velocity dispersion measurements, both prone to degeneracies. We study in detail one of the three known cases of strong lensing by a quasar to accurately measure the mass of its host and to infer a total lensing mass within the Einstein radius. The lensing measurement is more precise than any other alternative technique and compatible with the local scaling relation between the mass of the black hole and the stellar mass. The sample of such quasar–galaxy or quasar–quasar lensing systems should reach a few hundred with Euclid and the Rubin-Large Synoptic Survey Telescope, thus enabling the application of such a method with statistically significant sample sizes.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Millon, Martin ; Institute of Physics, Laboratory of Astrophysics, École Polytechnique Fédérale de Lausanne (EPFL), Versoix, Switzerland ; Kavli Institute for Particle Astrophysics and Cosmology and Department of Physics, Stanford University, Stanford, United States
Courbin, Frédéric ; Institute of Physics, Laboratory of Astrophysics, École Polytechnique Fédérale de Lausanne (EPFL), Versoix, Switzerland
Galan, Aymeric ; Institute of Physics, Laboratory of Astrophysics, École Polytechnique Fédérale de Lausanne (EPFL), Versoix, Switzerland ; Department of Physics, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
Sluse, Dominique ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) ; STAR Institute, Liège, Belgium
Ding, Xuheng; Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Japan
Tewes, Malte ; Argelander-Institut für Astronomie, Universität Bonn, Bonn, Germany
Djorgovski, S.G.; California Institute of Technology, Pasadena, United States
Language :
English
Title :
Strong gravitational lensing by AGNs as a probe of the quasar–host relations in the distant Universe
M.M. acknowledges the support of the Swiss National Science Foundation (SNSF) under grant P500PT_203114. M.M., F.C. and A.G. are supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (COSMICLENS: grant agreement no. 787886) and the Swiss National Science Foundation (SNSF) under grant 200020_200463. X.D. is supported by JSPS KAKENHI grant no. JP22K14071.
Courbin, F. et al. Three quasi-stellar objects acting as strong gravitational lenses. Astron. Astrophys. 540, A36 (2012). DOI: 10.1051/0004-6361/201118015
Ferrarese, L. & Merritt, D. A fundamental relation between supermassive black holes and their host galaxies. Astrophys. J. 539, L9–L12 (2000). DOI: 10.1086/312838
Gebhardt, K. et al. A relationship between nuclear black hole mass and galaxy velocity dispersion. Astrophys. J. 539, L13–L16 (2000). DOI: 10.1086/312840
Springel, V. et al. Simulations of the formation, evolution and clustering of galaxies and quasars. Nature 435, 629–636 (2005). DOI: 10.1038/nature03597
Di Matteo, T., Colberg, J., Springel, V., Hernquist, L. & Sijacki, D. Direct cosmological simulations of the growth of black holes and galaxies. Astrophys. J. 676, 33–53 (2008). DOI: 10.1086/524921
Peng, C. Y. How mergers may affect the mass scaling relation between gravitationally bound systems. Astrophys. J. 671, 1098–1107 (2007). DOI: 10.1086/522774
Kormendy, J. & Ho, L. C. Coevolution (or not) of supermassive black holes and host galaxies. Annu. Rev. Astron. Astrophys. 51, 511–653 (2013). DOI: 10.1146/annurev-astro-082708-101811
Sexton, R. O. et al. Stronger constraints on the evolution of the MBH–σ⋆ relation up to z ~ 0.6. Astrophys. J. 878, 101 (2019).
Ding, X. et al. The mass relations between supermassive black holes and their host galaxies at 1 < z < 2 HST-WFC3. Astrophys. J. 888, 37 (2020).
Ding, X. et al. Testing the evolution of correlations between supermassive black holes and their host galaxies using eight strongly lensed quasars. Mon. Not. R. Astron. Soc. 501, 269–280 (2021). DOI: 10.1093/mnras/staa2992
Jahnke, K. et al. Massive galaxies in COSMOS: evolution of black hole versus bulge mass but not versus total stellar mass over the last 9 Gyr? Astrophys. J. 706, L215–L220 (2009). DOI: 10.1088/0004-637X/706/2/L215
Schramm, M. & Silverman, J. D. The black hole-bulge mass relation of active galactic nuclei in the Extended Chandra Deep Field-South Survey. Astrophys. J. 767, 13 (2013). DOI: 10.1088/0004-637X/767/1/13
Schulze, A. & Wisotzki, L. Accounting for selection effects in the BH–bulge relations: no evidence for cosmological evolution. Mon. Not. R. Astron. Soc. 438, 3422–3433 (2014). DOI: 10.1093/mnras/stt2457
Woo, J. H. in Panoramic Views of Galaxy Formation and Evolution, (eds Kodama, T., Yamada, T. & Aoki, K.) (Astronomical Society of the Pacific, 2008 vol. 399).
Treu, T., Woo, J.-H., Malkan, M. A. & Blandford, R. D. Cosmic evolution of black holes and spheroids. II. Scaling relations at z = 0.36. Astrophys. J. 667, 117–130 (2007). DOI: 10.1086/520633
Cen, R. Coevolution between supermassive black holes and bulges is not via internal feedback regulation but by rationed gas supply due to angular momentum distribution. Astrophys. J. Lett. 805, L9 (2015). DOI: 10.1088/2041-8205/805/1/L9
Lauer, T. R., Tremaine, S., Richstone, D. & Faber, S. M. Selection bias in observing the cosmological evolution of the M ffl–σ and M ffl–L relationships. Astrophys. J. 670, 249–260 (2007). DOI: 10.1086/522083
Claeskens, J. F., Lee, D. W., Remy, M., Sluse, D. & Surdej, J. QSO mass constraints from gravitational lensing studies of quasar pairs. The cases of Q1548+114 A & B and Q1148+0055 A & B. Astron. Astrophys. 356, 840–848 (2000).
Meyer, R. A., Delubac, T., Kneib, J.-P. & Courbin, F. Quasi-stellar objects acting as potential strong gravitational lenses in the SDSS-III BOSS survey. Astron. Astrophys. 625, A56 (2019). DOI: 10.1051/0004-6361/201834978
Taak, Y. C. & Im, M. High-z Universe probed via lensing by QSOs (HULQ). I. Number estimates of QSO–QSO and QSO–galaxy lenses. Astrophys. J. 897, 163 (2020).
Galan, A., Peel, A., Joseph, R., Courbin, F. & Starck, J. L. SLITRONOMY: towards a fully wavelet-based strong lensing inversion technique. Astron. Astrophys. 647, A176 (2021). DOI: 10.1051/0004-6361/202039363
Suyu, S. H. et al. Dissecting the gravitational lens B1608+656. II. Precision measurements of the Hubble constant, spatial curvature, and the dark energy equation of state. Astrophys. J. 711, 201–221 (2010). DOI: 10.1088/0004-637X/711/1/201
Despali, G. et al. Detecting low-mass haloes with strong gravitational lensing I: the effect of data quality and lensing configuration. Mon. Not. R. Astron. Soc. 510, 2480–2494 (2022). DOI: 10.1093/mnras/stab3537
Grier, C. J. et al. Stellar velocity dispersion measurements in high-luminosity quasar hosts and implications for the AGN black hole mass scale. Astrophys. J. 773, 90 (2013).
Letawe, G. et al. On-axis spectroscopy of the host galaxies of 20 optically luminous quasars at z ~0.3. Mon. Not. R. Astron. Soc. 378, 83–108 (2007). DOI: 10.1111/j.1365-2966.2007.11741.x
Millon, M. et al. TDCOSMO. I. An exploration of systematic uncertainties in the inference of H 0 from time-delay cosmography. Astron. Astrophys. 639, A101 (2020). DOI: 10.1051/0004-6361/201937351
Park, D. et al. Extending the calibration of C IV-based single-epoch black hole mass estimators for active galactic nuclei. Astrophys. J. 839, 93 (2017).
Bahk, H., Woo, J.-H. & Park, D. Calibrating Mg II-based black hole mass estimators with Hβ reverberation measurements. Astrophys. J. 875, 50 (2019).
Bertin, E. & Arnouts, S. SExtractor: software for source extraction. Astron. Astrophys. Suppl. Ser. 117, 393–404 (1996). DOI: 10.1051/aas:1996164
Birrer, S. et al. lenstronomy II: A gravitational lensing software ecosystem. J. Open Source Softw. 6, 3283 (2021).
Bolton, A. S., Burles, S., Koopmans, L. V. E., Treu, T. & Moustakas, L. A. The Sloan Lens ACS Survey. I. A large spectroscopically selected sample of massive early-type lens galaxies. Astrophys. J. 638, 703–724 (2006). DOI: 10.1086/498884
Shajib, A. J., Treu, T., Birrer, S. & Sonnenfeld, A. Dark matter haloes of massive elliptical galaxies at z ~ 0.2 are well described by the Navarro–Frenk–White profile. Mon. Not. R. Astron. Soc. 503, 2380–2405 (2021). DOI: 10.1093/mnras/stab536
Refregier, A. Shapelets - I. A method for image analysis. Mon. Not. R. Astron. Soc. 338, 35–47 (2003). DOI: 10.1046/j.1365-8711.2003.05901.x
Birrer, S., Amara, A. & Refregier, A. Gravitational lens modeling with basis sets. Astrophys. J. 813, 102 (2015).
Joseph, R., Courbin, F., Starck, J. L. & Birrer, S. Sparse lens inversion technique (SLIT): lens and source separability from linear inversion of the source reconstruction problem. Astron. Astrophys. 623, A14 (2019). DOI: 10.1051/0004-6361/201731042
Starck, J.-L., Fadili, J. & Murtagh, F. The undecimated wavelet decomposition and its reconstruction. IEEE Trans. Image Process. 16, 297–309 (2007). DOI: 10.1109/TIP.2006.887733
Abazajian, K. N. et al. The seventh data release of the Sloan Digital Sky Survey. Astrophys. J. Suppl. 182, 543–558 (2009). DOI: 10.1088/0067-0049/182/2/543
Guo, H., Shen, Y. Wang, S. PyQSOFit: Python code to fit the spectrum of quasars (Astrophysics Source Code Library, 2018); http://ascl.net/1809.008
Yip, C. W. et al. Spectral classification of quasars in the Sloan Digital Sky Survey: eigenspectra, redshift, and luminosity effects. Astron. J. 128, 2603–2630 (2004). DOI: 10.1086/425626
Schlegel, D. J., Finkbeiner, D. P. & Davis, M. Maps of dust infrared emission for use in estimation of reddening and cosmic microwave background radiation foregrounds. Astrophys. J. 500, 525–553 (1998). DOI: 10.1086/305772
Mejía-Restrepo, J. E., Trakhtenbrot, B., Lira, P., Netzer, H. & Capellupo, D. M. Active galactic nuclei at z ~ 1.5 – II. Black hole mass estimation by means of broad emission lines. Mon. Not. R. Astron. Soc. 460, 187–211 (2016). DOI: 10.1093/mnras/stw568
Liu, H.-Y. et al. A comprehensive and uniform sample of broad-line active galactic nuclei from the SDSS DR7. Astrophys. J. Suppl. 243, 21 (2019).
Ho, L. C. & Kim, M. A revised calibration of the virial mass estimator for black holes in active galaxies based on single-epoch Hβ spectra. Astrophys. J. 809, 123 (2015).
Morishita, T. et al. Massive dead galaxies at z ~ 2 with HST Grism spectroscopy. I. Star formation histories and metallicity enrichment. Astrophys. J. 877, 141 (2019).
Park, D. et al. Cosmic evolution of black holes and spheroids. V. The relation between black hole mass and host galaxy luminosity for a sample of 79 active galaxies. Astrophys. J. 799, 164 (2015). DOI: 10.1088/0004-637X/799/2/164
Bell, E. F. & de Jong, R. S. Stellar mass-to-light ratios and the Tully–Fisher relation. Astrophys. J. 550, 212–229 (2001). DOI: 10.1086/319728
Binney, J. Tremaine, S. Galactic Dynamics (Princeton University Press, 1987).
Häring, N. & Rix, H.-W. On the black hole mass–bulge mass relation. Astrophys. J. 604, L89–L92 (2004). DOI: 10.1086/383567
Bennert, V. N., Auger, M. W., Treu, T., Woo, J.-H. & Malkan, M. A. A local baseline of the black hole mass scaling relations for active galaxies. I. Methodology and results of pilot study. Astrophys. J. 726, 59 (2011). DOI: 10.1088/0004-637X/726/2/59