[en] The manufacturing and operational roughness of aerodynamic profiles impacts both the laminar and the turbulent boundary layers state, directly affecting the aerodynamic and thermal performance of typical turbomachinery components. By better understanding the underlying physical mechanisms, the present work aims at building a more refined and comprehensive model to take the effects of surface finish into account. The model is implemented into the MIT Multiple Blade Interacting Streamtube Euler Solver (MISES) and is validated against experimental results for different roughness levels, Reynolds number, and Mach number regimes. In the proposed model, the roughness effects on the turbulent boundary layer (BL) state are included through the modification of the turbulent skin friction law, while the roughness level is implemented through a new definition of ks that accounts for the influence of the roughness skewness. Particular emphasis is placed on the modeling of the transitionally rough regime. Finally, roughness effects on transition are modeled by implementing the Mayle rough-induced onset transition criterion. Results are validated in terms of the total pressure loss coefficient and the outlet flow angle, leading to a marked improvement in terms of agreement with the experimental data.
Disciplines :
Mechanical engineering
Author, co-author :
Delvaux, Grégory; Department of Turbomachinery and Propulsion, Von Karman Inst. for Fluid Dynamics, Rhode Saint Genèse, Belgium
Toracchio, Riccardo ; Université de Liège - ULiège > Aérospatiale et Mécanique (A&M) ; Department of Turbomachinery and Propulsion, Von Karman Inst. for Fluid Dynamics, Rhode Saint Genèse, Belgium
Boufidi, Elissavet; Department of Turbomachinery and Propulsion, Von Karman Inst. for Fluid Dynamics, Rhode Saint Genèse, Belgium
Croner, Emma; Department of Digital Sciences, Safran Tech, Magny les Hameaux, France
Fontaneto, Fabrizio; Department of Turbomachinery and Propulsion, Von Karman Inst. for Fluid Dynamics, Rhode Saint Genèse, Belgium
Language :
English
Title :
The Modeling of Roughness Effect on the Performance of a Controlled Diffusion Airfoil
Jiménez, J., 2004, "Turbulent Flows Over Rough Walls, " Annu. Rev. Fluid Mech., 36, pp. 173-196.
Reif, B. P., and Durbin, P., 2011, Statistical Theory and Modeling for Turbulent Flows, John Wiley & Sons, West Sussex, UK.
Nikuradse, J., 1933, "Naca Technical Memorandum 1292. Stromungsgesetze in Rauhen Rohren, vDI forschungshefte 361" (English translation: Laws of Flow in Rough Pipes).
Schlichting, H., 1937, "Experimental Investigation of the Problem of Surface Roughness, No. 823, " National Advisory Commitee for Aeronautics.
ASME, 2009, Asme b46. 1-2009. Surface Texture (Surface Roughness, Waviness and Lay), ASME, New York.
Cebeci, T., and Chang, K., 1978, "Calculation of Incompressible Rough-Wall Boundary-Layer Flows, " AIAA. J., 16(7), pp. 730-735.
Aupoix, B., and Spalart, P., 2003, "Extensions of the Spalart-allmaras Turbulence Model to Account for Wall Roughness, " Int. J. Heat and Fluid Flow, 24(4), pp. 454-462.
Bradshaw, P., 1959, "A Simple Method for Determining Turbulent Skin Friction From Velocity Profiles, " J. Aerosp. Sci., 26(12), pp. 841-841.
Clauser, F. H., 1954, "Turbulent Boundary Layers in Adverse Pressure Gradients, " J. Aeronaut. Sci., 21(2), pp. 91-108.
Dvorak, F., 1969, "Calculation of Turbulent Boundary Layers on Rough Surfaces in Pressure Gradient, " AIAA. J., 7(9), pp. 1752-1759.
Boyle, R. J., and Stripf, M., 2009, "Simplified Approach to Predicting Rough Surface Transition, " ASME J. Turbomach., 131(4), p. 041020.
Bons, J. P., Taylor, R. P., McClain, S. T., and Rivir, R. B., 2001, "The Many Faces of Turbine Surface Roughness, " ASME J. Turbomach., 123(4), pp. 739- 748.
Yuan, J., and Piomelli, U., 2014, "Estimation and Prediction of the Roughness Function on Realistic Surfaces, " J. Turbul., 15(6), pp. 350-365.
Sigal, A., and Danberg, J. E., 1990, "New Correlation of Roughness Density Effect on the Turbulent Boundary Layer, " AIAA. J., 28(3), pp. 554-556.
Hama, F. R., 1954, "Boundary Layer Characteristics for Smooth and Rough Surfaces, " Trans. Soc. Nav. Arch. Mar. Eng., 62, pp. 333-358.
Bettermann, D., 1965, Contribution a l'etude de la couche limite turbulente le long de plaques rugueuses., Centre National de la Recherche Scientifique Laboratoire d'Aerothermique, Meudon, France.
Dirling Jr, R., 1973, "A Method for Computing Roughwall Heat Transfer Rates on Reentry Nosetips, " 8th Thermophysics Conference, Palm Springs, CA, p. 763.
Simpson, R. L., 1973, "A Generalized Correlation of Roughness Density Effects on the Turbulent Boundary Layer., " AIAA. J., 11(2), pp. 242-244.
Schaffler, A., 1980, "Experimental and Analytical Investigation of the Effects of Reynolds Number and Blade Surface Roughness on Multistage Axial Flow Compressors, " J. Eng. Power, 102(1), pp. 5-12.
Mayle, R. E., 1991, "The 1991 IGTI Scholar Lecture: The Role of Laminar-Turbulent Transition in Gas Turbine Engines, " ASME J. Turbomach., 113(4), pp. 509-536.
Radeztsky Jr, R. H., Reibert, M. S., and Saric, W. S., 1999, "Effect of Isolated Micron-Sized Roughness on Transition in Swept-Wing Flows, " AIAA. J., 37(11), pp. 1370-1377.
Arnal, D., Seraudie, A., and Archambaud, J., 2000, "Influence of Surface Roughness and of Suction on the Receptivity of a Swept Wing Boundary Layer, " Laminar-Turbulent Transition. IUTAM Symposia, H. F. Fasel, and W. S. Saric, eds., Springer, Berlin/Heidelberg.
Degrez, G., 2013, Two-Dimensional Boundary Layers, Revised Edition, Course Note 143, von Karman Institute for Fluid Dynamics, Sint-Genesius-Rode, Belgium.
Roberts, W. B., 1979, "Axial Compressor Blade Optimization in the Low Reynolds Number Regime, " AIAA. J., 17(12), pp. 1361-1367.
Roberts, S., and Yaras, M., 2004, "Modeling of Boundary-Layer Transition, " Turbo Expo: Power for Land, Sea, and Air, Vienna, Austria, Vol. 41693, pp. 81-92.
Arnal, D., 2004, "Laminarity and Laminar-Turbulent Transition Control, " Tiré à part-Office national d'études et de recherches aerospatiales.
Youngren, H. H., 1991, "Analysis and Design of Transonic Cascades with Splitter Vanes, " PhD thesis, Massachusetts Institute of Technology, Cambridge, MA.
Giles, M. B., and Drela, M., 1987, "Two-Dimensional Transonic Aerodynamic Design Method, " AIAA. J., 25(9), pp. 1199-1206.
Abu-Ghannam, B., and Shaw, R., 1980, "Natural Transition of Boundary Layers-The Effects of Turbulence, Pressure Gradient, and Flow History, " J. Mech. Eng. Sci., 22(5), pp. 213-228.
Drela, M., 1989, "Integral Boundary Layer Formulation for Blunt Trailing Edges, " 7th Applied Aerodynamics Conference, Seattle, WA, p. 2166.
Arndt, R. E., and Ippen, A. T., 1968, "Rough Surface Effects on Cavitation Inception, " J. Basic Eng., 90(2), pp. 249-261.
Swafford, T., 1983, "Analytical Approximation of Two-Dimensional Separated Turbulent Boundary-Layer Velocity Profiles, " AIAA. J., 21(6), pp. 923-926.
Mack, L. M., 1977, "Transition Prediction and Linear Stability Theory, " AGARD Laminar-Turbulent Transition, Lyngby, Denmark.
Lione, F., and Galbiati, G. M., 2020, "Experimental and Theoretical Analysis of the Roughness Effect on Modern Compressor Bladings, " Master Thesis, Politecnico di Milano, Milan, Italy.
Schultz, D., Jones, T., Oldfield, M., and Daniels, L., 1978, "A New Transient Cascade Facility for the Measurement of Heat Transfer Rates, " AGARD High Temp. Probl. in Gas Turbine Eng, 27 p(SEE N 78-21118 12-07).
Back, S. C., Sohn, J. H., and Song, S. J., 2010, "Impact of Surface Roughness on Compressor Cascade Performance, " ASME J. Fluids Eng., 132(6), p. 064502.