Chile; diatom assemblages; Lacustrine sediment; Late-Holocene; sedimentary geochemistry; tephra; Global and Planetary Change; Archeology (arts and humanities); Ecology; Earth-Surface Processes; Paleontology; Archeology
Abstract :
[en] The environmental variability of Northern Chilean Patagonia during the last millennia is evaluated using a multi-proxy analysis of sediment cores from Lake Esponja (45°S 72°W) to decipher if the sediment deposition is controlled by volcanic eruptions, landslides induced by earthquake or heavy rainfall. The lake is located in a glacio-tectonic valley in Patagonia. The organic-rich clayey silt sediment with low biogenic silica content was analysed for grain size, magnetic susceptibility, organic matter, biogenic silica content and diatom assemblages, mineralogy (X-ray diffraction), organic (IRMS C and N analyses) and inorganic (XRF core-scanner) geochemistry and glass shard major composition (Microprobe, SEM). The combination of 210Pb, 137Cs, 14C and tephrochronology indicates an averaged accumulation rate of 0.4 mm/year, leading to a record of ~3.5 kyr within 154 cm. The sedimentary geochemistry records changes in volcanic supplies, diatom productivity and detrital inputs. The sediments were interrupted by millimetric to centimetric layers corresponding to tephra deposition related to explosive eruptions of nearby volcanoes Macá, Melimoyu and Hudson. Concerning the diatoms, the dominant planktonic species (80–150 cm) are replaced by benthic species in a transition interval (55–80 cm) and then by Surirella spp. in the upper core. This last genus indicates a closure of the basin ~2 ka ago, probably related to an uplift linked to a rejuvenation of the Mañihuales fault. This local change could reflect regional tectonic instability. Indeed, a partial earthquake rupture occurred around ~AD100 along the southern part of the Valdivia segment, recorded as a mass transport deposit in Aysén fjord sedimentation. The fine detrital input varies over time with more variable Si/Al values in the lower part of the LEs14 core than in the upper 80 cm. The higher values may reflect wetter conditions, leading to an higher lake level and more turbid conditions in agreement with changes in diatom assemblages.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Fagel, Nathalie ; Université de Liège - ULiège > Département de géologie > Argiles, géochimie et environnements sédimentaires
Pedreros, Pablo; Faculty of Environmental Sciences and EULA - Chile Environmental Sciences Centre, University of Concepcion, Chile
Alvarez, Denisse; Faculty of Environmental Sciences and EULA - Chile Environmental Sciences Centre, University of Concepcion, Chile ; Centro Bahía Lomas, Facultad de Ciencias, Universidad Santo Tomás, Chile
Israde Alcantara, Isabel; Instituto de Investigaciones en Ciencias de la Tierra, Universidad Michoacacana de San Nicolás de Hidalgo, Morelia, Mexico
Vega Alay, Ignacio; Faculty of Environmental Sciences and EULA - Chile Environmental Sciences Centre, University of Concepcion, Chile
Namur, Olivier; KUL, Belgium
Araneda, Alberto; Faculty of Environmental Sciences and EULA - Chile Environmental Sciences Centre, University of Concepcion, Chile
Schmidt, Sabine ; UMR Environnements et Paléoenvironnements Océaniques et Continentaux, Université de Bordeaux, France
Lepoint, Gilles ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution
Urrutia, Roberto; Faculty of Environmental Sciences and EULA - Chile Environmental Sciences Centre, University of Concepcion, Chile
Language :
English
Title :
Volcanic, tectonic and climate controls on lacustrine sedimentary supplies over the last millenia in NE Chilean Patagonia (Lake Esponja, Aysen, 45°S)
FONDECYT - Chile Fondo Nacional de Desarrollo Científico y Tecnológico
Funding text :
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This research was partially funded by bilateral cooperation program Wallonia-Brussels International WBI-Chili, ANID/Fondecyt projects 1201277 and 11201231. D. Álvarez, R. Urrutia and P Pedreros thank to CRHIAM ANID/FONDAP 15130015.The authors thank all the persons who contributed for the sample preparation, analyses and/or figure elaboration, in particular I. Billy (UMR EPOC, Université de Bordeaux, France) for XRF core scanner and Scopix measurements, J. Otten from University of Liege for grain-size analysis and Alex Henríquez from the University of Concepcion for the elaboration of the geological map. The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This research was partially funded by bilateral cooperation program Wallonia-Brussels International WBI-Chili, ANID/Fondecyt projects 1201277 and 11201231. D. Álvarez, R. Urrutia and P Pedreros thank to CRHIAM ANID/FONDAP 15130015.
Aitchison J (1986) The Statistical Analysis of Compositional Data. London: Chapman and Hall.
Appleby PG Oldfield F (1978) The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. CATENA 5: 1–8.
Battarbee RW Jones VJ Flower RJ et al. (2001) Diatoms. In: Last W Smol J (eds) Tracking Environmental Change Using Lake Sediments, Volume 3: Terrestrial, Algal, and Siliceous Indicators. Dordrecht: Kluwer Academic Publishers, pp.155–202.
Bertrand S Araneda A Vargas P et al. (2012) Using the N/C ratio to correct bulk radiocarbon ages from lake sediments: Insights from Chilean Patagonia. Quaternary Geochronology 12: 23–29.
Bertrand S Hughen K Sepúlveda J et al. (2014) Late Holocene covariability of the southern westerlies and sea surface temperature in northern Chilean Patagonia. Quaternary Science Reviews 105: 195–208.
Bicudo DC Tremarin PI Almeida PD et al. (2016) Ecology and distribution of Aulacoseira species (Bacillariophyta) in tropical reservoirs from Brazil. Diatom Research 31(3): 199–215.
Bizama G Torrejón F Aguayo M et al. (2011) Pérdida y fragmentación del bosque nativo en la cuenca del río aysén (Patagonia-Chile) durante el siglo XX. Revista de Geografía Norte Grande 49: 125–138.
Blaauw MJ Christen A Aquino Lopez MA (2021) Rbacon: Age-Depth Modelling using Bayesian Statistics. R package version 2.5.3. Available at: https://CRAN.R-project.org/package=rbacon (accessed 18 November 2022).
Bradbury JP (1997) A diatom-based paleohydrologic record of climate change for the past 800 k.y. From Owens Lake, California. Geological Society of America Special Papers 317: 99–112.
Bradley RS (1999) Paleoclimatology: Reconstruction of Climates from the Quaternary. International Geophysics Series, 2nd edn. San Diego, CA: Academic Press.
Candès EJ Li X Ma Y et al. (2011) Robust principal component analysis? Journal of Association for Computing Machinery 57(8): 1–37.
Carrevedo ML Frugone M Latorre C et al. (2015) A 700-year record of climate and environmental change from a high Andean lake: Laguna del Maule, central Chile (36°S). The Holocene 25: 956–972.
Carter SJ Colman SM (1994) Biogenic silica in Lake Baikal sediments: Results from 1990–1992 American cores. Journal of Great Lakes Research 20(4): 751–760.
Casa V Mataloni G Van de Vijver B (2018) Six new Frustulia species (Bacillariophyta) in Tierra del Fuego peatbogs, Patagonia, Argentina. Fottea. 18(1): 55–71.
Cembrano J Hervé F Lavenu A (1996) The Liquiñe Ofqui fault zone: A long-lived intra-arc fault system in southern Chile. Tectonophysics 259: 55–66.
Cembrano J Lara L (2009) The link between volcanism and tectonics in the southern volcanic zone of the Chilean Andes: A review. Tectonophysics 471: 96–113.
Cembrano J Schermer E Lavenu A et al. (2000) Contrasting nature of deformation along an intra-arc shear zone, the Liquiñe–Ofqui fault zone, southern Chilean Andes. Tectonophysics 319: 129–149.
Chapron E Ariztegui D Mulsow S et al. (2006) Impact of the 1960 major subduction earthquake in northern Patagonia (Chile, Argentina). Quaternary International 158: 58–71.
Chapron E Beck C Pourchet M et al. (1999) 1822 earthquake-triggered homogenite in Lake Le Bourget (NW alps). Terra Nova 11: 86–92.
Charrier R Pinto L Rodrigues MPM (2007) Tectonostratigraphic Evolution of the Andean Orogen in Chile. In: Moreno T Gibbsons W (eds) The Geology of Chile. London: The Geological Society, pp.21–114.
Croux C Filzmoser P Fritz H (2013) Robust sparse principal component analysis. Technometrics 55: 202–214.
Cruces F Urrutia R Parra O et al. (2006) Changes in diatom assemblages in an andean lake in response to a recent volcanic event. Archiv fur Hydrobiologie 165(1): 23–35.
Davis JC (2002) Statistics and Data Analysis in Geology. New York, NY: John Wiley & sons, p.638.
De Nicola DM (2000) A review of diatoms found in highly acidic environments. Hydrobiologia 433: 111–122.
D’Orazio M Innocenti F Manetti P et al. (2003) The Quaternary calc-alkaline volcanism of the Patagonian Andes close to the Chile triple junction: Geochemistry and petrogenesis of volcanic rocks from the Cay and maca volcanoes (∼45°S, Chile). Journal of South American Earth Sciences 16: 219–242.
Elbert J Wartenburger R von Gunten L et al. (2013) Late Holocene air temperature variability reconstructed from the sediments of Laguna Escondida, Patagonia, Chile (45°30′S). Palaeogeography Palaeoclimatology Palaeoecology 369: 482–492.
Fagel N Alvarez D Namur O et al. (2017) Lacustrine record of last millennia eruptions in northern Chilean Patagonia (45–47°S). The Holocene 27: 1227–1251.
Fernández M Björck S Wohlfarth B et al. (2013) Diatom assemblage changes in lacustrine sediments from Isla de los Estados, southernmost South America, in response to shifts in the southwesterly wind belt during the last deglaciation. Journal of Paleolimnology 50: 433–446.
Filzmoser P Fritz H Kalcher K (2018) PcaPP: Robust PCA by Projection Pursuit. R package version 1.9-73. Available at: https://CRAN.R-project.org/package=pcaPP
Finkelstein SA Gajewski K (2008) Responses of fragilarioid-dominated diatom assemblages in a small Arctic lake to Holocene climatic changes, Russell Island, Nunavut, Canada. Journal of Paleolimnology 40: 1079–1095.
Folk RL Ward WC (1957) Brazos River bar [Texas]: A study in the significance of grain size parameters. Journal of Sedimentary Petrology 27: 3–26.
Fontaine CM Siani G Delpech G et al. (2021) Post-glacial tephrochronology record off the Chilean continental margin (~41°S). Quaternary Science Reviews 261: 106928.
Fontijn K Lachowycz SM Rawson H et al. (2014) Late Quaternary tephrostratigraphy of southern Chile and Argentina. Quaternary Science Reviews 89: 70–84.
Frugone-Alvarez M Latorre C Barreiro-Lostres F et al. (2020) Volcanism and climate change as drivers in holocene depositional dynamic of Laguna del Maule (Andes of central Chile – 36° S). Climate of the Past 16: 1097–1125.
Frugone-Alvarez M Latorre C Giralt S et al. (2017) A 7000-year high-resolution lake sediment record from coastal central Chile (Lago Vichuquén, 34°S): Implications for past sea level and environmental variability. Journal of Quaternary Science 32: 830–844.
Garreaud R Lopez P Minvielle M et al. (2013) Large-scale control on the Patagonian climate. Journal of Climate 26: 215–230.
Garrett RG (2018) Rgr: Applied Geochemistry EDA. R package version 1.1.15. Available at: https://CRAN.R-project.org/package=rgr
Gilli A Ariztegui D Anselmetti FS et al. (2005) Mid-Holocene strengthening of the Southern Westerlies in South America - Sedimentological evidences from Lago Cardiel, Argentina (49° S). Global planetary Change 49: 75–93.
Grimm EC (1991) TILIA and TILIA GRAPH. Springfield, IL: Illinois State Museum.
Grimm EC Maher LJ Nelson DM (2009) The magnitude of error in conventional bulk-sediment radiocarbon dates from central North America. Quaternary Research 72(2): 301–308.
Gutiérrez F Gioncada A González Ferran O et al. (2005) The Hudson volcano and surrounding monogenetic centres (Chilean Patagonia): An example of volcanism associated with ridge–trench collision environment. Journal of Volcanology and Geothermal Research 145: 207–233.
Guyard H Chapron E St-Onge G et al. (2007) High-altitude varve records of abrupt environmental changes and mining activity over the last 4000 years in the western French alps (Lake Bramant, Grandes Rousses Massif). Quaternary Science Reviews 26: 2644–2660.
Haberle SG Lumley SH (1998) Age and origin of tephras recorded in postglacial lake sediments to the west of the southern Andes, 44°S to 47°S. Journal of Volcanology and Geothermal Research 84: 239–256.
Harris IC Jones PD (2020) CRU TS4.03: Climatic Research Unit (CRU) Time-Series (TS) version 4.03 of high-resolution gridded data of month-by-month variation in climate. Centre for Environmental Data Analysis. DOI: 10.5285/10d3e3640f004c578403419aac167d82
Hartley B Barber HG Carter JR et al. (1996) An Atlas of British Diatoms. Bristol: Biopress Ltd.
Hedges JI Stern JH (1984) Carbon and nitrogen determinations of carbonate-containing solids1. Limnology and Oceanography 29(3): 657–663.
Heiri O Lotter AF Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results. Journal of Paleolimnology 25(1): 101–110.
Hepp C Reyes C Muñoz R (2018) Análisis de Datos Históricos de Cinco Estaciones Meteorológicas de La Región de Aysén. Boletín Técnico N°365. Coyhaique, Aysén-Patagonia: Instituto de Investigaciones Agropecuarias, Centro de Investigación INIA Tamel Aike (in Spanish).
Hervé F (1994) The Southern Andes between 39j and 44jS latitude: The geological signature of a transpressive tectonic regime related to a magmatic arc. In: Reutter K-J Scheuber E Wigger PJ (eds) Tectonics of the Southern Central Andes. Berlin: Springer, pp.243–248.
Hickey RL Frey FA Gerlach DC et al. (1986) Multiple sources for basaltic arc rocks from the Southern Volcanic Zone of the Andes (34°–41°S): Trace element and isotopic evidence for contributions from subducted oceanic crust, mantle, and continental crust. Journal of Geophysical Research 91: 5963–5983.
Hickey-Vargas R Sun M López-Escobar L et al. (2002) Multiple subduction components in the mantle wedge: Evidence from eruptive centers in the central Southern volcanic zone, Chile. Geology 30(3): 199–202.
Hickey-Vargas RL Moreno-Roa H López-Escobar L et al. (1989) Geochemical variations in Andean basaltic and silicic lavas from the Villarrica-Lanín volcanic chain (39.5°S): An evaluation of source heterogeneity, fractional crystallization and crustal assimilation. Contributions to Mineralogy and Petrology 103: 361–386.
Hill MO Gauch HG (1980) Detrended correspondence analysis: An improved ordination technique. Vegetatio 42: 47–58.
Hogg AG Hua Q Blackwell PG et al. (2013) SHCal13 Southern Hemisphere calibration, 0–50,000 years cal BP. Radiocarbon 55(4): 1889–1903.
Juggins S (2017) Rioja: Analysis of Quaternary Science Data, R package version (0.9-21). Available at: http://cran.r-project.org/package=rioja
Kalugin I Darin A Rogozin D et al. (2013) Seasonal and centennial cycles of carbonate mineralisation during the past 2500 years from varved sediment in Lake Shira, South Siberia. Quaternary International 290–291: 245–252.
Kanamori H (1977) The energy release in great earthquakes. Journal of Geophysical Research 82: 2981–2987.
Kilian R Hohner M Biester H et al. (2003) Holocene peat and lake sediment tephra record from the southernmost Chilean Andes (53-55°S). Revista geologica de Chile 30: 47–64.
Kliem P Buylaert JP Hahn A et al. (2013) Magnitude, geomorphologic response and climate links of lake level oscillations at Laguna Potrok Aike, Patagonian steppe (Argentina). Quaternary Science Reviews 71: 131–146.
Krammer K Lange-Bertalot H (1986) Süßwasserflora von Mitteleuropa, Bacillariophyceae Volume 2/1: Naviculaceae. Jena: Gustav Fischer Verlag.
Krammer K Lange-Bertalot H (1988) Süßwasserflora von Mitteleuropa, Bacillariophyceae, Volume 2/2: Bacillariacae, Epithemiaceae, Surirellaceae. New York, NY: Gustav Fischer Verlag.
Krammer K Lange-Bertalot H (1991a) Süßwasserflora von Mitteleuropa, Bacillariophyceae, Volume 2/3: Centrales, Fragilariaceae, Eunotiaceae. Berlin: Spektrum Akademischer Verlag Heidelberg.
Krammer K Lange-Bertalot H (1991b) Süßwasserflora von Mitteleuropa, Bacillariophyceae, Volume 2/4: Achnanthaceae, Kritische Ergänzungen Zu Navicula (Lineolatae) und Gomphonema. New York, NY: Gustav Fischer Verlag.
Kratzmann DJ Carey S Scasso RA et al. (2010) Role of cryptic amphibole crystallization in magma differentiation at Hudson volcano, Southern Volcanic Zone, Chile. Contributions to Mineralogy and Petrology 159: 237–264.
Kylander ME Ampel L Wohlfarth B et al. (2011) High-resolution X-ray fluorescence core scanning analysis of Les echets (France) sedimentary sequence: New insights from chemical proxies. Journal of Quaternary Science 26: 109–117.
Kylander ME Lind EM Wastegård S et al. (2012) Recommendations for using XRF core scanning as a tool in tephrochronology. The Holocene 22: 371–375.
Lange-Bertalot H Rumrich U Rumrich M (2000) Diatoms of the Andes (From Venezuela to Patagonia/ Tierra Del Fuego). Iconografia diatomologica 9: 1–673.
Legrand D Barrientos S Bataille K et al. (2011) The fluid-driven tectonic swarm of Aysen Fjord, Chile (2007) associated with two earthquakes (Mw=6.1 and mw=6.2) within the Liquiñe-Ofqui Fault Zone. Continental Shelf Research 31: 154–161.
Leinen M (1977) A normative calculation technique for determining opal in deep-sea sediments. Geochimica et Cosmochimica Acta 41(5): 671–676.
López-Escobar L Cembrano J Moreno H (1995a) Geochemistry and tectonics of the chilean southern Andes basaltic Quaternary volcanism (37º-46ºS). Revista Geológica de Chile 22(2): 219–234.
López-Escobar L Parada MA Hickey-Vargas R et al. (1995b) Calbuco volcano and minor eruptive centers distributed along the Liquiñe-ofqui Fault Zone, Chile (41°-42°S): Contrasting origin of andesitic and basaltic magma in the Southern Volcanic Zone of the Andes. Contributions to Mineralogy and Petrology 119: 345–361.
López-Escobar L Kilian R Kempton P et al. (1993) Petrology and geochemistry of Quaternary rocks from the southern volcanic zone of the Andes between 41°30′ and 46°00′S, Chile. Revista Geológica de Chile 20(1): 33–55.
Lowe DJ (2011) Tephrochronology and its application: A review. Quaternary Geochronology 6: 107–153.
Luebert F Pliscoff P (2006) Sinopsis Bioclimática y Vegetacional de Chile. Santiago: Editorial Universitaria.
Markgraf V (1993) Paleoenvironments and paleoclimates in Tierra del Fuego and southernmost Patagonia, South America. Palaeogeography Palaeoclimatology Palaeoecology 102(1-2): 53–68.
Markgraf V Bradbury JP Schwalb A et al. (2003) Holocene palaeoclimates of southern Patagonia: Limnological and environmental history of Lago Cardiel, Argentina. The Holocene 13(4): 581–591.
Matteuzzo MC Volkmer-ribeiro C Varajão AFD et al. (2015) Environmental factors related to the production of a complex set of spicules in a tropical freshwater sponge. Anais da Academia Brasileira de Ciencias 87(4): 2013–2029.
Mella M Ramos A Kraus S et al. (2012) Datos Tefroestratigraphicos de Erupciones Holocenas del Volcan Mentolat, Andes del Sur (44°40’S), Chile. Antofagasta: Congreso Geológico Chileno.
Moernaut J Daele MV Heirman K et al. (2014) Lacustrine turbidites as a tool for quantitative earthquake reconstruction: New evidence for a variable rupture mode in south central Chile. Journal of Geophysical Research-Solid Earth 119: 1607–1633.
Moernaut J De Batist M Charlet F et al. (2007) Giant earthquakes in south-central Chile revealed by holocene mass-wasting events in Lake Puyehue. Sedimentary Geology 195(3–4): 239–256.
Moore D Reynolds RC Jr (1997) X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford: Oxford University Press.
Morais KSD Bartozek ER Zorzal-Almeida S et al. (2018) Taxonomy and ecology of order Surirellales (Bacillariophyceae) in tropical reservoirs in Southeastern of Brazil. Acta Limnologica Brasiliensia 30: 204.
Morales EA Wetzel CE Rivera SF et al. (2014) Current taxonomic studies on the diatom flora (Bacillariophyceae) of the Bolivian Altiplano, South America, with possible consequences for palaeoecological assessments. Journal of Micropalaentology 33: 121–129.
Moreiras SM (2005) Climatic effect of ENSO associated with landslide occurrence in the Central Andes, Mendoza Province, Argentina. Landslides 2: 53–59.
Moreno PI François JP Villa-Martínez RP et al. (2009) Millennial-scale variability in southern hemisphere westerly wind activity over the last 5000 years in SW Patagonia. Quaternary Science Reviews 28: 25–38.
Mueller UA Grunsky EC (2016) Multivariate spatial analysis of lake sediment geochemical data, Melville Peninsula, Nunavut, Canada. Applied Geochemistry 75: 247–262.
Naranjo JA Stern CR (1998) Holocene explosive activity of Hudson Volcano, southern Andes. Bulletin of Volcanology 59: 291–306.
Naranjo JA Stern CR (2004) Holocene tephrochronology of the southernmost part (42°30'-45°S) of the Andean Southern Volcanic Zone. Revista Geologica de Chile 31(2): 225–240.
Ohlendorf C Sturm M (2008) A modified method for biogenic silica determination. Journal of Paleolimnology 39(1): 137–142.
Oksanen J Blanchet FG Friendly M et al. (2019) Vegan: Community Ecology Package. R package version 2.5-6. Available at: https://CRAN.R-project.org/package=vegan
Óladóttir BA Sigmarsson O Larsen G et al. (2011) Provenance of basaltic tephra from Vatnajökull subglacial volcanoes, Iceland, as determined by major- and trace-element analyses. The Holocene 21: 1037–1048.
Pankhurst RJ Weaver SD Hervé F et al. (1999) Mesozoic-Cenozoic evolution of the North Patagonian batholith in Aysen, southern Chile. Journal of the Geological Society 156: 673–694.
Peel MC Finlayson BL McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences Discussions, European Geosciences Union 11(5): 1633–1644.
Perren BB Hodgson DA Roberts SJ et al. (2020) Southward migration of the southern hemisphere westerly winds corresponds with warming climate over centennial timescales. Communications Earth & Environment 1: 58.
R Development Core Team (2018) R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. Available at: http://www.R-project.org/
Revelle W (2017) Psych: Procedures for Personality and Psychological Research. Evanston, IL: North-Western University. Available at: http://personality-project.org/r/psych
Sellés D Rodríguez AC Dungan MA et al. (2004) Geochemistry of Nevado de Longaví volcano (36.2°S): A compositionally atypical arc volcano in the Southern Volcanic Zone of the Andes. Revista Geológica de Chile 31(2): 293–315.
Sepúlveda SA Rebolledo S Vargas G (2006) Recent catastrophic debris flows in Chile: Geological hazard, climatic relationships and human response. Quaternary International 158: 83–95.
SERNAGEOMIN (2003) Mapa Geológico de Chile 1:1000000: versión digital. Gobierno de Chile, Servicio Nacional de Geología y Minería, Publicación Geológica Digital, No. 4 (CD-ROM, versión1.0, 2003). Santiago, Chile.
SERNAGEOMIN (2012) Investigatión geológica minera ambiantal en Aysén (Codigo BIP No. 30036527-0). Resumen ejecutivo y synthesis de localidades. Report, Servicio Nacional de Geología y Minería Santiago, Chile.
Siebert L Simkin T Kimberly P (2010) Volcanoes of the World, 3rd edn. Berkeley, CA: University of California Press.
Siegenthaler C Sturm M (1991) Slump induced surges and sediment transport in Lake Uri, Switzerland. SIL Proceedings 24(2): 955–958.
Stern CR (2004) Active Andean volcanism: its geologic and tectonic setting. Revista Geologica del Chile 31(2): 161–206.
Stern CR de Porras ME Maldonado A (2015) Tephrochronology of the upper Rio Cisnes valley (44°S), southern Chile. Andean Geology 42: 173–189.
Stupar YV Schäfer J García MG et al. (2014) Historical mercury trends recorded in sediments from the Laguna del Plata, Córdoba, Argentina. Chemie der Erde Geochimistry 74: 353–363.
Thomson SN (2002) Late Cenozoic geomorphic and tectonic evolution of the Patagonian Andes between latitudes 42°S and 46°S: An appraisal based on fission-track results from the transpressional intra-arc Liquiñe-Ofqui fault zone. Geological Society of America Bulletin 114(9): 1159–1173.
Van Daele M Moernaut J Doom L et al. (2015) A comparison of the sedimentary records of the 1960 and 2010 great Chilean earthquakes in 17 lakes: Implications for quantitative lacustrine palaeoseismology. Sedimentology 62: 1466–1496.
Van Daele M Versteeg W Pino M et al. (2013) Widespread deformation of basin-plain sediments in Aysén fjord (Chile) due to impact by earthquake-triggered, onshore-generated mass movements. Marine Geology 337: 67–79.
Van de Vijver B Frenot Y Beyens B (2002) Freshwater Diatoms from Ile de la Possission (Crozet Archipelago, Subantartica). Bibliotheca Diatomologica 46: 1–412.
Vanneste K Wils K Van Daele M (2018) Probabilistic evaluation of fault sources based on paleoseismic evidence from mass-transport deposits: The example of Aysén Fjord, Chile. Journal of Geophysical Research Solid Earth 123: 9842–9865.
Villa-Martinez R Moreno PI Valenzuela MA (2012) Deglacial and postglacial vegetation changes on the eastern slopes of the central Patagonian Andes (47°S). Quaternary Science Reviews 32: 86–99.
Waldmann N Anselmetti FS Ariztegui D et al. (2011) Holocene mass-wasting events in Lago Fagnano, Tierra del Fuego (54°S): Implications for paleoseismicity of the magallanes-Fagnano transform fault. Basin Research 23: 171–190.
Wang M Zheng H Xie X et al. (2011) A 600-year flood history in the Yangtze River drainage: Comparison between a subaqueous delta and historical records. Chinese Science Bulletin 56: 188–195.
Watt SFL Pyle DM Mather TA (2013) The volcanic response to deglaciation: Evidence from glaciated arcs and a reassessment of global eruption records. Earth Science Review 122: 77–102.
Weller D Miranda CG Moreno PI et al. (2014) The large late-glacial Ho eruption of the Hudson volcano, southern Chile. Bulletin of Volcanology 76: 831.
Weller D Miranda CG Moreno PI et al. (2015) Tephrochronology of the Southernmost Andean soutertn Volcanic zone, Chile. Bulletin of Volcanology 77: 107.
Wille M Maidana NI Schäbitz F et al. (2007) Vegetation and climate dynamics in southern South America: The microfossil record of Laguna Potrok Aike, Santa Cruz, Argentina. Review of Palaeobotany and Palynology 146: 234–246.
Wils K Van Daele M Kissel C et al. (2020) Seismo-Turbidites in Aysén Fjord (southern Chile) reveal a complex pattern of rupture modes along the 1960 megathrust earthquake segment. Journal of Geophysical Research Solid Earth 125: e2020JB019405.
Wils K Van Daele M Lastras G et al. (2018) Holocene event record of Aysén Fjord (Chilean Patagonia): An interplay of volcanic eruptions and crustal and megathrust earthquakes. Journal of Geophysical Research Solid Earth 123: 324–343.
Witak M Hernández-Almeida I Grosjean M et al. (2017) Diatom-based reconstruction of trophic status changes recorded in varved sediments of Lake żabińskie (northeastern Poland), AD 1888-2010. Oceanological and Hydrobiological Studies 46(1): 1–17.
Żarczyński M Wacnik A Tylmann W (2019) Tracing lake mixing and oxygenation regime using the Fe/Mn ratio in varved sediments: 2000 year-long record of human-induced changes from Lake żabińskie (NE Poland). The Science of the Total Environment 657: 585–596.
Ziegler M Jilbert T de Lange GJ et al. (2008) Bromine counts from XRF scanning as an estimate of the marine organic carbon content of sediment cores. Geochemistry Geophysics Geosystems 9: Q05009.