Pollution; Soil Science; Agronomy and Crop Science
Disciplines :
Earth sciences & physical geography
Author, co-author :
Gourfi, Abdelali ; Laboratory of Georessources, Geoenvironment and Civil Engineering (L3G), Department of Earth Sciences, Faculty of Sciences and Techniques Cadi Ayyad University Marrakech Morocco
Daoudi, Lahcen ; Université de Liège - ULiège > Département de géologie > Argiles, géochimie et environnements sédimentaires ; Laboratory of Georessources, Geoenvironment and Civil Engineering (L3G), Department of Earth Sciences, Faculty of Sciences and Techniques Cadi Ayyad University Marrakech Morocco
Daoud, Najat Ben; Laboratory of Georessources, Geoenvironment and Civil Engineering (L3G), Department of Earth Sciences, Faculty of Sciences and Techniques Cadi Ayyad University Marrakech Morocco
Fagel, Nathalie ; Université de Liège - ULiège > Département de géologie > Argiles, géochimie et environnements sédimentaires
Language :
English
Title :
Clay minerals in soils and sediment as tracers of provenance: The case study of the N'fis watershed, Morocco
Adamou, S. N., Gourfi, A., & Daoudi, L. (2022). Water erosion in South-Western Niger: Impacts of natural and anthropogenic factors on soil losses. Geomorphologie-Relief Processus Environnement, 28, 77–92. https://doi.org/10.4000/geomorphologie.16744
Arjmand Sajjadi, S., & Mahmoodabadi, M. (2015). Sediment concentration and hydraulic characteristics of rain-induced overland flows in arid land soils. Journal of Soils and Sediments, 15(3), 710–721. https://doi.org/10.1007/s11368-015-1072-z
Armoza-Zvuloni, R., Shlomi, Y., Abadi, I., Shem-Tov, R., & Laronne, J. B. (2022). Fluvial sediment yields in hyper-arid areas, exemplified by Nahal Nehushtan, Israel. Land (Basel), 11(7), 1050. https://doi.org/10.3390/land11071050
Batunacun, W. R., Lakes, T., Yunfeng, H., & Nendel, C. (2019). Identifying drivers of land degradation in Xilingol, China, between 1975 and 2015. Land Use Policy, 83, 543–559. https://doi.org/10.1016/j.landusepol.2019.02.013
Bezuidenhout, J. (2020). The investigation of natural radionuclides as tracers for monitoring sediment processes. Journal of Applied Geophysics, 181, 104135. https://doi.org/10.1016/j.jappgeo.2020.104135
Biscaye, P. E. (1965). Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Bulletin of the Geological Society of America, 76, 803. https://doi.org/10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2
Blatt, H. (1985). Provenance studies and mudrocks. Journal of Sedimentary Petrology, 55, 69–75. https://doi.org/10.1306/212f8611-2b24-11d7-8648000102c1865d
Borchers, A., Voigt, I., Kuhn, G., & Diekmann, B. (2011). Mineralogy of glaciomarine sediments from the Prydz Bay-Kerguelen region: Relation to modern depositional environments. Antarctic Science, 23, 164–179. https://doi.org/10.1017/S0954102010000830
Borrelli, P., Alewell, C., Alvarez, P., Alexandre, J., Anache, A., Baartman, J., Ballabio, C., Bezak, N., Biddoccu, M., Cerdà, A., Chalise, D., Chen, S., Chen, W., De Girolamo, A. M., Gessesse, G. D., Deumlich, D., Diodato, N., Efthimiou, N., Erpul, G., … Panagos, P. (2021). Soil erosion modelling: A global review and statistical analysis. Science of the Total Environment, 780, 146494. https://doi.org/10.1016/j.scitotenv.2021.146494
Bouizrou, I., Bouadila, A., Aqnouy, M., & Gourfi, A. (2023). Assessment of remotely sensed precipitation products for climatic and hydrological studies in arid to semi-arid data-scarce region, Central-Western Morocco. Remote Sensing Application, 30, 100976. https://doi.org/10.1016/J.RSASE.2023.100976
Bout-Roumazeilles, V., Riboulleau, A., Du Châtelet, E. A., Lorenzoni, L., Tribovillard, N., Murray, R. W., Müller-Karger, F., & Astor, Y. (2013). Clay mineralogy of surface sediments as a tool for deciphering river contributions to the Cariaco Basin (Venezuela). Journal of Geophysical Research, Oceans, 118, 750–761. https://doi.org/10.1002/jgrc.20079
Caputo, M., & Carcione, J. M. (2013). A memory model of sedimentation in water reservoirs. Journal of Hydrology, 476, 426–432. https://doi.org/10.1016/j.jhydrol.2012.11.016
Collins, A. L., & McGonigle, D. F. (2008). Monitoring and modelling diffuse pollution from agriculture for policy support: UK and European experience. Environmental Science & Policy, 11, 97–101. https://doi.org/10.1016/j.envsci.2008.01.001
Collins, A. L., Pulley, S., Foster, I. D. L., Gellis, A., Porto, P., & Horowitz, A. J. (2017). Sediment source fingerprinting as an aid to catchment management: A review of the current state of knowledge and a methodological decision-tree for end-users. Journal of Environmental Management, 194, 86–108. https://doi.org/10.1016/j.jenvman.2016.09.075
Cook, H. E., Johnson, P. D., Matti, J. C., & Zemmels, I. (1975). Methods of sample preparation and X-ray diffraction analysis in X-ray mineralogy laboratory.
Dayal, A. M., & Varma, A. K. (2017). Exploration Technique. In Shale gas: Exploration and environmental and economic impacts (pp. 65–93). Elsevier Inc. https://doi.org/10.1016/B978-0-12-809573-7.00005-6
de la Torre-Robles, L., Muñoz-Robles, C., Huber-Sannwald, E., & Antonio Reyes-Agüero, J. (2023). Functional stability: From soil aggregates to landscape scale in a region severely affected by gully erosion in semi-arid Central Mexico. Catena (Amst), 222, 106864. https://doi.org/10.1016/j.catena.2022.106864
de Vente, J., Poesen, J., Verstraeten, G., Govers, G., Vanmaercke, M., Van Rompaey, A., Arabkhedri, M., & Boix-Fayos, C. (2013). Predicting soil erosion and sediment yield at regional scales: Where do we stand? Earth-Science Reviews, 127, 16–29. https://doi.org/10.1016/j.earscirev.2013.08.014
de Vente, J., Poesen, J., Verstraeten, G., Van Rompaey, A., & Govers, G. (2008). Spatially distributed modelling of soil erosion and sediment yield at regional scales in Spain. Global and Planetary Change, 60(3–4), 393–415. https://doi.org/10.1016/j.gloplacha.2007.05.002
de Vente, J., Verduyn, R., Verstraeten, G., Vanmaercke, M., & Poesen, J. (2011). Factors controlling sediment yield at the catchment scale in NW Mediterranean geoecosystems. Journal of Soils and Sediments, 11, 690–707. https://doi.org/10.1007/s11368-011-0346-3
Derakhshan-Babaei, F., Nosrati, K., Tikhomirov, D., Christl, M., Sadough, H., & Egli, M. (2020). Relating the spatial variability of chemical weathering and erosion to geological and topographical zones. Geomorphology, 363, 107235. https://doi.org/10.1016/j.geomorph.2020.107235
Desmet, P. J. J., & Govers, G. (1996). A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units. Journal of Soil and Water Conservation, 51(5), 427–433.
Diani, K., Ettazarini, S., Hahou, Y., El Belrhiti, H., Allaoui, W., Mounir, K., & Gourfi, A. (2023). Identification of soil erosion sites in semiarid zones: Using GIS, remote sensing, and PAP/RAC model. In Handbook of Hydroinformatics. Elsevier. https://doi.org/10.1016/b978-0-12-821961-4.00003-8
DiPietro, J. A. (2013). Component: The rock/sediment type. In Landscape evolution in the United States (pp. 15–27). Elsevier. https://doi.org/10.1016/B978-0-12-397799-1.00002-6
Dou, Y., Li, J., Zhao, J., Wei, H., Yang, S., Bai, F., Zhang, D., Ding, X., & Wang, L. (2014). Clay mineral distributions in surface sediments of the Liaodong Bay, Bohai Sea and surrounding river sediments: Sources and transport patterns. Continental Shelf Research, 73, 72–82. https://doi.org/10.1016/j.csr.2013.11.023
du Châtelet, E. A., Bout-Roumazeilles, V., Coccioni, R., Frontalini, F., Francescangeli, F., Margaritelli, G., Rettori, R., Spagnoli, F., Semprucci, F., Trentesaux, A., & Tribovillard, N. (2016). Environmental control on a land–sea transitional setting: Integrated sedimentological, geochemical and faunal approaches. Environment and Earth Science, 75. https://doi.org/10.1007/s12665-015-4957-7
EC. (2000). Directive 2000/60/EC of the European Parliament and of the council of 23 October 2000 establishing a framework for community action in the field of water policy. Official Journal of the European Parliament, 21, 196. https://doi.org/10.1039/ap9842100196
Ehrmann, W. (1998). Implications of late Eocene to early Miocene clay mineral assemblages in McMurdo sound (Ross Sea, Antarctica) on paleoclimate and ice dynamics. Palaeogeography, Palaeoclimatology, Palaeoecology, 139, 213–231. https://doi.org/10.1016/S0031-0182(97)00138-7
Eriksson, P. G., Altermann, W., Nelson, D. R., Mueller, W. U., & Catuneanu, O. (2004). Evolution of the hydrosphere and atmosphere. In Developments in Precambrian geology (Vol. 12(C), pp. 359–511). Elsevier. https://doi.org/10.1016/S0166-2635(04)80007-0
Esquevin, J. (1969). Influence de la composition chimique des illites sur leur cristallinité. Bulletin du Centre de recherches Pau - SNPA.
Fagel, N., Boski, T., Likhoshway, L., & Oberhaensli, H. (2003). Late quaternary clay mineral record in Central Lake Baikal (academician ridge, Siberia). Palaeogeography Palaeoclimatology Palaeoecology, 193(1), 159–179. https://doi.org/10.1016/S0031-0182(02)00633-8
Farhan, Y., & Ayed, A. (2017). Assessment of flash-flood Hazard in arid watersheds of Jordan. Journal of Geographic Information System, 09(6), 717–751. https://doi.org/10.4236/jgis.2017.96045
García-Ruiz, J. M., Nadal-Romero, E., Lana-Renault, N., & Beguería, S. (2013). Erosion in Mediterranean landscapes: Changes and future challenges. Geomorphology, 198, 20–36. https://doi.org/10.1016/j.geomorph.2013.05.023
Gingele, F. X., De Deckker, P., & Hillenbrand, C. D. (2001). Clay mineral distribution in surface sediments between Indonesia and NW Australia - source and transport by ocean currents. Marine Geology, 179, 135–146. https://doi.org/10.1016/S0025-3227(01)00194-3
Gourfi, A., Daoudi, L., & de Vente, J. (2020). A new simple approach to assess sediment yield at a large scale with high landscape diversity: An example of Morocco. Journal of African Earth Sciences, 168, 103871. https://doi.org/10.1016/J.JAFREARSCI.2020.103871
Gourfi, A., Daoudi, L., & Shi, Z. (2018). The assessment of soil erosion risk, sediment yield and their controlling factors on a large scale: Example of Morocco. Journal of African Earth Sciences, 147, 281–299. https://doi.org/10.1016/j.jafrearsci.2018.06.028
Grauso, S., Fattoruso, G., Crocetti, C., & Montanari, A. (2008). Estimating the suspended sediment yield in a river network by means of geomorphic parameters and regression relationships. Hydrology and Earth System Sciences, 12, 177–191. https://doi.org/10.5194/hess-12-177-2008
Griffiths, J., Worden, R. H., Wooldridge, L. J., Utley, J. E. P., Duller, R. A., & Edge, R. L. (2019). Estuarine clay mineral distribution: Modern analogue for ancient sandstone reservoir quality prediction. Sedimentology, 66, 2011–2047. https://doi.org/10.1111/sed.12571
Guzmán, G., Quinton, J. N., Nearing, M. A., Mabit, L., & Gómez, J. A. (2013). Sediment tracers in water erosion studies: Current approaches and challenges. Journal of Soils and Sediments, 13(4), 816–833. https://doi.org/10.1007/s11368-013-0659-5
He, M., Zheng, H., Huang, X., Jia, J., & Li, L. (2013). Yangtze River sediments from source to sink traced with clay mineralogy. Journal of Asian Earth Sciences, 69, 60–69. https://doi.org/10.1016/j.jseaes.2012.10.001
Hengl, T., Heuvelink, G. B. M., Kempen, B., Leenaars, J. G. B., Walsh, M. G., Shepherd, K. D., Sila, A., MacMillan, R. A., Mendes de Jesus, J., Tamene, L., & Tondoh, J. E. (2015). Mapping soil properties of Africa at 250 m resolution: Random forests significantly improve current predictions. PLoS One, 10, e0125814. https://doi.org/10.1371/journal.pone.0125814
Jeans, C. V. (1990) H. Chamley clay sedimentology. Springer-Verlag, 1989. xx + 623 pp. 243 Figs. 65 Tables. Price DM 128. ISBN: 3.540.50889.9. Clay Miner. https://doi.org/10.1180/claymin.1990.025.2.09
Katyal, A., & Morrison, R. D. (2007). Forensic applications of contaminant transport models in the subsurface. In Introduction to environmental forensics. Elsevier. https://doi.org/10.1016/B978-012369522-2/50012-9
Keesstra, S. D., Bruijnzeel, L. A., & van Huissteden, J. (2009). Meso-scale catchment sediment budgets: Combining field surveys and modeling in the Dragonja catchment, Southwest Slovenia. Earth Surface Processes and Landforms, 34, 1547–1561. https://doi.org/10.1002/esp.1846
Khanchoul, K., Balla, F., & Othmani, O. (2020). Assessment of soil erosion by RUSLE model using GIS: A case study of chemorah basin, Algeria. Malaysian Journal of Geosciences, 4(2), 70–78. https://doi.org/10.26480/mjg.02.2020.70.78
Kotti, F., Dezileau, L., Mahé, G., Habaieb, H., Benabdallah, S., Bentkaya, M., Calvez, R., & Dieulin, C. (2018). Impact of dams and climate on the evolution of the sediment loads to the sea by the Mejerda River (golf of Tunis) using a paleo-hydrological approach. Journal of African Earth Sciences., 142, 226–233. https://doi.org/10.1016/j.jafrearsci.2017.10.003
Kubler, B. (1964). Les argiles, indicateurs de me ́tamorphisme. Revue Institute Franc ̧ais Pe ́trole, 19, 1093–1112.
Liu, Z., Colin, C., Huang, W., Chen, Z., Trentesaux, A., & Chen, J. (2007). Clay minerals in surface sediments of the Pearl River drainage basin and their contribution to the South China Sea. Chinese Science Bulletin, 52(8), 1101–1111. https://doi.org/10.1007/s11434-007-0161-9
Liu, Z., Trentesaux, A., Clemens, S. C., Colin, C., Wang, P., Huang, B., & Boulay, S. (2003). Clay mineral assemblages in the northern South China Sea: Implications for east Asian monsoon evolution over the past 2 million years. Marine Geology, 201, 133–146. https://doi.org/10.1016/S0025-3227(03)00213-5
Mathieu, P. (2002). Caractérisation des sols et de leurs propriétés hydrodynamiques pour la modélisation hydrologique en milieu semi-aride Bassin versant du Tensift – Maroc. ENSAR.
Moore, D. M., & Reynolds, R. C. (1997). X-ray diffraction and the identification and analysis of clay minerals (Vol. 6). Oxford University Press. https://doi.org/10.1038/srep26532
Moore, M., & Reynolds, R. C. (1989). X-ray diffraction and the identification and analysis of Clay Minerals (Vol. 38). Oxford University Press.
Mor-Mussery, A., & Laronne, J. B. (2020). The effects of gully erosion on the ecology of arid loessial agro-ecosystems, the northern Negev, Israel. Catena (Amst), 194, 104712. https://doi.org/10.1016/J.CATENA.2020.104712
Nesbitt, H. W., & Young, G. M. (1982). Early proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, 715–717. https://doi.org/10.1038/299715a0
Net, L. I., Alonso, M. S., & Limarino, C. O. (2002). Source rock and environmental control on clay mineral associations, lower section of Paganzo group (carboniferous), Northwest Argentina. Sedimentary Geology, 152, 183–199. https://doi.org/10.1016/S0037-0738(02)00068-4
Notebaert, B., Verstraeten, G., Rommens, T., Vanmontfort, B., Govers, G., & Poesen, J. (2009). Establishing a Holocene sediment budget for the river Dijle. Catena (Amst), 77, 150–163. https://doi.org/10.1016/j.catena.2008.02.001
Ochoa, P. A., Fries, A., Mejía, D., Burneo, J. I., Ruíz-Sinoga, J. D., & Cerdà, A. (2016). Effects of climate, land cover and topography on soil erosion risk in a semiarid basin of the Andes. Catena (Amst), 140, 31–42. https://doi.org/10.1016/j.catena.2016.01.011
Oliveira, A., Rocha, F., Rodrigues, A., Jouanneau, J., Dias, A., Weber, O., & Gomes, C. (2002). Clay minerals from the sedimentary cover from the northwest Iberian shelf. Progress in Oceanography, 52, 233–247. https://doi.org/10.1016/S0079-6611(02)00008-3
Panagos, P., Borrelli, P., Meusburger, K., Yu, B., Klik, A., Lim, K. J., Yang, J. E., Ni, J., Miao, C., Chattopadhyay, N., & Sadeghi, S. H. (2017). Global rainfall erosivity assessment based on high-temporal resolution rainfall records. Scientific Reports, 7(1), 4175. https://doi.org/10.1038/s41598-017-04282-8
Panagos, P., Borrelli, P., Poesen, J., Ballabio, C., Lugato, E., Meusburger, K., Montanarella, L., & Alewell, C. (2015). The new assessment of soil loss by water erosion in Europe. Environmental Science & Policy, 54, 438–447. https://doi.org/10.1016/J.ENVSCI.2015.08.012
Pandey, A., Himanshu, S. K., Mishra, S. K., & Singh, V. P. (2016). Physically based soil erosion and sediment yield models revisited. Catena (Amst), 147, 595–620. https://doi.org/10.1016/j.catena.2016.08.002
Petschick, R., Kuhn, G., & Gingele, F. (1996). Clay mineral distribution in surface sediments of the South Atlantic: Sources, transport, and relation to oceanography. Marine Geology, 130, 203–229.
Quiñonero-Rubio, J. M., Nadeu, E., Boix-Fayos, C., & de Vente, J. (2016). Evaluation of the effectiveness of Forest restoration and check-dams to reduce catchment sediment yield. Land Degradation and Development, 27(4), 1018–1031. https://doi.org/10.1002/ldr.2331
Rafik, A., Ibouh, H., El Fels, A. E. A., Eddahby, L., Mezzane, D., Bousfoul, M., Amazirh, A., Ouhamdouch, S., Bahir, M., Gourfi, A., Dhiba, D., & Chehbouni, A. (2022). Soil salinity detection and mapping in an environment under water stress between 1984 and 2018 (case of the largest oasis in Africa-Morocco). Remote Sensing, 14(7), 1606. https://doi.org/10.3390/rs14071606
Rahmati, O., Tahmasebipour, N., Haghizadeh, A., Pourghasemi, H. R., & Feizizadeh, B. (2017). Evaluating the influence of geo-environmental factors on gully erosion in a semi-arid region of Iran: An integrated framework. Science of the Total Environment, 579, 913–927. https://doi.org/10.1016/j.scitotenv.2016.10.176
Ramon, R., Evrard, O., Laceby, J. P., Caner, L., Inda, A. V., de Barros, C. A. P., Minella, J. P. G., & Tiecher, T. (2020). Combining spectroscopy and magnetism with geochemical tracers to improve the discrimination of sediment sources in a homogeneous subtropical catchment. Catena (Amst), 195, 104800. https://doi.org/10.1016/j.catena.2020.104800
Reed, M. S., Buenemann, M., Atlhopheng, J., Akhtar-Schuster, M., Bachmann, F., Bastin, G., Bigas, H., Chanda, R., Dougill, A. J., Essahli, W., Evely, A. C., Fleskens, L., Geeson, N., Glass, J. H., Hessel, R., Holden, J., Ioris, A. A. R., Kruger, B., Liniger, H. P., … Verzandvoort, S. (2011). Cross-scale monitoring and assessment of land degradation and sustainable land management: A methodological framework for knowledge management. Land Degradation and Development, 22, 261–271. https://doi.org/10.1002/ldr.1087
Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D. K., & Yoder, D. C. (1997). Predicting soil erosion by water: A guide to conservation planning with the revised universal soil loss equation (RUSLE). In Agriculture Handbook. USDA DC0-16-048938-565-100.
Rickson, R. J. (2014). Can control of soil erosion mitigate water pollution by sediments? Science of the Total Environment, 468-469, 1187–1197. https://doi.org/10.1016/j.scitotenv.2013.05.057
Roser, B. P., & Korsch, R. J. (1986). Determination of tectonic setting of sandstone- mudstone suites using SiO2 content and K2O/Na2O ratio. Journal of Geology, 94, 635–650. https://doi.org/10.1086/629071
Sanchez-Moreno, J. F., Jetten, V., Mannaerts, C. M., & de Pina Tavares, J. (2014). Selecting best mapping strategies for storm runoff modeling in a mountainous semi-arid area. Earth Surface Processes and Landforms, 39(8), 1030–1048. https://doi.org/10.1002/esp.3501
Scarciglia, F., Le Pera, E., & Critelli, S. (2007). The onset of the sedimentary cycle in a mid-latitude upland environment: Weathering, pedogenesis, and geomorphic processes on plutonic rocks (Sila massif, Calabria). Special paper of the Geological Society of America. https://doi.org/10.1130/2006.2420(10)
Sharpley, A. N., & Williams, J. R. (1990). Erosion productivity impact calculator: 1. Model documentation (EPIC). Technical bulletin. United State Department of agriculture.
Shirozu, H. (1988). Clay mineralogy: The basis of clay science (New ed.). Asakura Publishing.
Sougnez, N., van Wesemael, B., & Vanacker, V. (2011). Low erosion rates measured for steep, sparsely vegetated catchments in Southeast Spain. Catena (Amst), 84, 1–11. https://doi.org/10.1016/j.catena.2010.08.010
Thiry, M. (2000). Palaeoclimatic interpretation of clay minerals in marine deposits: An outlook from the continental origin. Earth Science Reviews, 49, 201–221. https://doi.org/10.1016/S0012-8252(99)00054-9
Valentin, C., Poesen, J., & Li, Y. (2005). Gully erosion: Impacts, factors and control. Catena (Amst), 63(2–3), 132–153. https://doi.org/10.1016/j.catena.2005.06.001
Villela, J. M., Nogueira, A. E., Ribeiro, C., & Crestana, S. (2020). Development of a water erosion tracer using industrial residue as a source of rare earth elements. Applied Clay Science, 195, 105709. https://doi.org/10.1016/j.clay.2020.105709
Wan, S. M., Li, A. C., Xu, K. H., & Yin, X. M. (2008). Characteristics of clay minerals in the northern South China Sea and its implications for evolution of east Asian monsoon since miocene. Diqiu Kexue - Zhongguo Dizhi Daxue Xuebao/Earth Science - Journal of China University of Geosciences, 19, 23–37.
Wang, J., Li, A., Xu, K., Zheng, X., & Huang, J. (2015). Clay mineral and grain size studies of sediment provenances and paleoenvironment evolution in the middle Okinawa trough since 17ka. Marine Geology, 366, 49–61. https://doi.org/10.1016/j.margeo.2015.04.007
White, A. F., & Blum, A. E. (1995). Effects of climate on chemical weathering in watersheds. In Water-rock interaction: Proceedings of the 8th International Symposium, WRI-8, Vladivostok. Routledge. https://doi.org/10.1016/0016-7037(95)00078-E
Wischmeier, W. H. (1976). Use and misuse of universal soil loss equation. Journal of Soil and Water Conservation, 31, 5–9.
Wischmeier, W. H., & Smith, D. D. (1978). Predicting rainfall erosion losses. A guide to conservation planning. Transactions of the American Geophysical Union. https://doi.org/10.1029/TR039i002p00285
Yair, A., & Lavee, H. (1981). An investigation of source areas of sediment and sediment transport by overland flow along arid hillslopes. Erosion and sediment transport measurement. Proc. Florence Symposium, International Association of Hydrological Sciences, IAHS-AISH Publication 133.
Zhang, X., Walling, D. E., He, X., & Long, Y. (2009). Use of landslide-dammed lake deposits and pollen tracing techniques to investigate the erosional response of a small drainage basin in the loess plateau, China, to land use change during the late 16th century. Catena (Amst), 79, 205–213. https://doi.org/10.1016/j.catena.2009.05.001
Zhang, X., Walling, D. E., Yang, Q., He, X., Wen, Z., Qi, Y., & Feng, M. (2006). 137Cs budget during the period of 1960s in a small drainage basin on the loess plateau of China. Journal of Environmental Radioactivity, 86, 78–91. https://doi.org/10.1016/j.jenvrad.2005.07.007
Zhao, G., Mu, X., Han, M., An, Z., Gao, P., Sun, W., & Xu, W. (2017). Sediment yield and sources in dam-controlled watersheds on the northern loess plateau. Catena (Amst), 149, 110–119. https://doi.org/10.1016/j.catena.2016.09.010
Zhao, Y., Zou, X., Gao, J., Wang, C., Li, Y., Yao, Y., Zhao, W., & Xu, M. (2018). Clay mineralogy and source-to-sink transport processes of Changjiang River sediments in the estuarine and inner shelf areas of the East China Sea. Journal of Asian Earth Sciences, 152, 91–102. https://doi.org/10.1016/j.jseaes.2017.11.038