Whole Genome Sequence Analysis of Cupriavidus necator C39, a Multiple Heavy Metal(loid) and Antibiotic Resistant Bacterium Isolated from a Gold/Copper Mine
Xie, Zhenchen; Wang, Dan; Ben Fekih, Ibtissemet al.
[en] Here a multiple heavy metal and antibiotic resistant bacterium Cupriavidus necator C39 (C. necator C39) was isolated from a Gold-Copper mine in Zijin, Fujian, China. C. necator C39 was able to tolerate intermediate concentrations of heavy metal(loid)s in Tris Minimal (TMM) Medium (Cu(II) 2 mM, Zn(II) 2 mM, Ni(II) 0.2 mM, Au(III) 70 μM and As(III) 2.5 mM). In addition, high resistance to multiple antibiotics was experimentally observed. Moreover, strain C39 was able to grow on TMM medium containing aromatic compounds such as benzoate, phenol, indole, p-hydroxybenzoic acid or phloroglucinol anhydrous as the sole carbon sources. The complete genome of this strain revealed 2 circular chromosomes and 1 plasmid, and showed the closest type strain is C. necator N-1T based on Genome BLAST Distance Phylogeny. The arsenic-resistance (ars) cluster GST-arsR-arsICBR-yciI and a scattered gene encoding the putative arsenite efflux pump ArsB were identified on the genome of strain C39, which thereby may provide the bacterium a robust capability for arsenic resistance. Genes encoding multidrug resistance efflux pump may confer high antibiotic resistance to strain C39. Key genes encoding functions in degradation pathways of benzene compounds, including benzoate, phenol, benzamide, catechol, 3- or 4-fluorobenzoate, 3- or 4-hydroxybenzoate and 3,4-dihydroxybenzoate, indicated its potential for degrading those benzene compounds.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Xie, Zhenchen; Institute of Environmental Microbiology, College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
Wang, Dan; College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
Ben Fekih, Ibtissem ; Université de Liège - ULiège > Département GxABT > Gestion durable des bio-agresseurs ; Institute of Environmental Microbiology, College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
Yu, Yanshuang; Institute of Environmental Microbiology, College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
Li, Yuanping; Institute of Environmental Microbiology, College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
Alwathnani, Hend; Department of Botany and Microbiology, King Saud University, Riyadh 11495, Saudi Arabia
Herzberg, Martin ; Molecular Microbiology, Institute for Biology/Microbiology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle, Germany
Rensing, Christopher; Institute of Environmental Microbiology, College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
Language :
English
Title :
Whole Genome Sequence Analysis of Cupriavidus necator C39, a Multiple Heavy Metal(loid) and Antibiotic Resistant Bacterium Isolated from a Gold/Copper Mine
Lee S. Khanal A. Cho A.H. Lee H. Kang M.S. Unno T. Hur H.G. Lee J.H. Cupriavidus sp. strain Ni-2 resistant to high concentration of nickel and its genes responsible for the tolerance by genome comparison Arch. Microbiol. 2019 201 1323 1331 10.1007/s00203-019-01700-5
Perez-Pantoja D. De la Lglesia R. Pieper D.H. Gonzalez B. Metabolic reconstruction of aromatic compounds degradation from the genome of the amazing pollutant-degrading bacterium Cupriavidus necator JMP134 Fems Microbiol. Rev. 2008 32 736 794 10.1111/j.1574-6976.2008.00122.x 18691224
Sohn Y.J. Son J. Jo S.Y. Park S.Y. Yoo J.I. Baritugo K.A. Na J.G. Choi J.I. Kim H.T. Joo J.C. et al. Chemoautotroph Cupriavidus necator as a potential game-changer for global warming and plastic waste problem: A review Bioresour. Technol. 2021 340 e125693 10.1016/j.biortech.2021.125693 34365298
Makkar N.S. Casida L.E. Cupriavidus necator gen. nov., sp. nov.; a nonobligate bacterial predator of bacteria in soil Int. J. Syst. Evol. Microbiol. 1987 37 323 326 10.1099/00207713-37-4-323
Budde C.F. Mahan A.E. Lu J.N. Rha C. Sinskey A.J. Roles of multiple acetoacetyl coenzyme a reductases in polyhydroxybutyrate biosynthesis in Ralstonia eutropha H16 J. Bacteriol. 2010 192 5319 5328 10.1128/JB.00207-10
Brigham C.J. Gai C.S. Lu J. Speth D.R. Worden R.M. Sinskey A.J. Engineering Ralstonia eutropha for production of isobutanol from CO2, H2, and O2 Advanced Biofuels and Bioproducts Lee J. Springer New York, NY, USA 2013 Volume 3 1065 1090 10.1007/978-1-4614-3348-4_39
Lee H.M. Jeon B.Y. Oh M.K. Microbial production of ethanol from acetate by engineered Ralstonia eutropha Biotechnol. Bioprocess Eng. 2016 21 402 407 10.1007/s12257-016-0197-2
Lu J.N. Brigham C.J. Gai C.S. Sinskey A.J. Studies on the production of branched-chain alcohols in engineered Ralstonia eutropha Appl. Microbiol. Biotechnol. 2012 96 283 297 10.1007/s00253-012-4320-9
Grousseau E. Lu J.N. Gorret N. Guillouet S.E. Sinskey A.J. Isopropanol production with engineered Cupriavidus necator as bioproduction platform Appl. Microbiol. Biotechnol. 2014 98 4277 4290 10.1007/s00253-014-5591-0
Muller J. MacEachran D. Burd H. Sathitsuksanoh N. Bi C.H. Yeh Y.C. Lee T.S. Hillson N.J. Chhabra S.R. Singer S.W. et al. Engineering of Ralstonia eutropha H16 for autotrophic and heterotrophic production of methyl ketones Appl. Environ. Microbiol. 2013 79 4433 4439 10.1128/AEM.00973-13
Przybylski D. Rohwerder T. Dilssner C. Maskow T. Harms H. Muller R.H. Exploiting mixtures of H2, CO2, and O2 for improved production of methacrylate precursor 2-hydroxyisobutyric acid by engineered Cupriavidus necator strains Appl. Microbiol. Biotechnol. 2015 99 2131 2145 10.1007/s00253-014-6266-6
Park J.M. Kim T.Y. Lee S.Y. Genome-scale reconstruction and in silico analysis of the Ralstonia eutropha H16 for polyhydroxyalkanoate synthesis, lithoautotrophic growth, and 2-methyl citric acid production BMC Syst. Biol. 2011 5 101 10.1186/1752-0509-5-101 21711532
Poehlein A. Kusian B. Friedrich B. Daniel R. Bowien B. Complete genome sequence of the type strain Cupriavidus necator N-1 J. Bacteriol. 2011 193 5017 10.1128/JB.05660-11 21742890
Lykidis A. Perez-Pantoja D. Ledger T. Mavromatis K. Anderson I.J. Ivanova N.N. Hooper S.D. Lapidus A. Lucas S. Gonzalez B. et al. The complete multipartite genome sequence of Cupriavidus necator JMP134, a versatile pollutant degrader PLoS ONE 2010 5 e9729 10.1371/journal.pone.0009729
Xin Y.F. Gao R. Cui F.F. Lu C.J. Liu H.L. Liu H.W. Xia Y.Z. Xun L.Y. The heterotrophic bacterium Cupriavidus pinatubonensis JMP134 oxidizes sulfide to sulfate with thiosulfate as a key intermediate Appl. Environ. Microbiol. 2020 86 e01835-e20 10.1128/AEM.01835-20 32917752
Little G.T. Ehsaan M. Arenas-Lopez C. Jawed K. Winzer K. Kovacs K. Minton N.P. Complete genome sequence of Cupriavidus necator H16 (DSM 428) Microbiol. Resour. Ann. 2019 8 e00814 e00819 10.1128/MRA.00814-19
Mori J.F. Nagai M. Kanaly R.A. Complete genome sequence of Cupriavidus necator KK10, an azaarene-degrading and polyhydroxyalkanoate-producing soil bacterium Microbiol. Resour. Ann. 2021 10 e0042321 10.1128/MRA.00423-21
Moriuchi R. Dohra H. Kanesaki Y. Ogawa N. Complete genome sequence of 3-chlorobenzoate-degrading bacterium Cupriavidus necator NH9 and reclassification of the strains of the genera Cupriavidus and Ralstonia based on phylogenetic and whole-genome sequence analyses Front. Microbiol. 2019 10 133 10.3389/fmicb.2019.00133
Rodriguez-Esperon M.C. Eastman G. Sandes L. Garabato F. Eastman I. Iriarte A. Fabiano E. Sotelo-Silveira J.R. Platero R. Genomics and transcriptomics insights into luteolin effects on the beta-rhizobial strain Cupriavidus necator UYPR2.512 Environ. Microbiol. 2022 24 240 264 10.1111/1462-2920.15845
Yonezuka K. Shimodaira J. Tabata M. Nagase S. Kasai D. Hosoyama A. Yamazoe A. Fujita N. Fukuda M. Draft genome sequence of a chlorinated-ethene degrader, Cupriavidus necator strain PHE3-6 (NBRC 110655) Genome Announc. 2016 4 e01743-e15 10.1128/genomeA.01743-15
Margaryan A. Diversity and application of heavy-metal resistant microbes Microbes in Microbial Communities Singh R.P. Manchanda G. Bhattacharjee K. Panosyan H. Springer Singapore 2021 153 174 10.1007/978-981-16-5617-0_7
Cai X. Zheng X. Zhang D. Iqbal W. Liu C. Yang B. Zhao X. Lu X. Mao Y. Microbial characterization of heavy metal resistant bacterial strains isolated from an electroplating wastewater treatment plant Ecotoxicol. Environ. Saf. 2019 181 472 480 10.1016/j.ecoenv.2019.06.036
Tuffin I.M. Hector S.B. Deane S.M. Rawlings D.E. Resistance determinants of a highly arsenic-resistant strain of Leptospirillum ferriphilum isolated from a commercial biooxidation tank Appl. Environ. Microbiol. 2006 72 2247 2253 10.1128/AEM.72.3.2247-2253.2006 16517682
Fashola M.O. Ngole-Jeme V.M. Babalola O.O. Heavy metal pollution from gold mines: Environmental effects and bacterial strategies for resistance Int. J. Environ. Res. Public Health 2016 13 1047 10.3390/ijerph13111047 27792205
Mergeay M. Nies D. Schlegel H.G. Gerits J. Charles P. Van Gijsegem F. Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals J. Bacteriol. 1985 162 328 334 10.1128/jb.162.1.328-334.1985 3884593
Tatusova T. DiCuccio M. Badretdin A. Chetvernin V. Nawrocki E.P. Zaslavsky L. Lomsadze A. Pruitt K.D. Borodovsky M. Ostell J. NCBI prokaryotic genome annotation pipeline Nucleic Acids Res. 2016 44 6614 6624 10.1093/nar/gkw569
Cantarel B.L. Coutinho P.M. Rancurel C. Bernard T. Lombard V. Henrissat B. The carbohydrate-active enzymes database (CAZy): An expert resource for glycogenomics Nucleic Acids Res. 2009 37 D233 D238 10.1093/nar/gkn663
Galperin M.Y. Makarova K.S. Wolf Y.I. Koonin E.V. Expanded microbial genome coverage and improved protein family annotation in the COG database Nucleic Acids Res. 2015 43 D261 D269 10.1093/nar/gku1223 25428365
Moriya Y. Itoh M. Okuda S. Yoshizawa A.C. Kanehisa M. KAAS: An automatic genome annotation and pathway reconstruction server Nucleic Acids Res. 2007 35 W182 W185 10.1093/nar/gkm321 17526522
Delcher A.L. Harmon D. Kasif S. White O. Salzberg S.L. Improved microbial gene identification with GLIMMER Nucleic Acids Res. 1999 27 4636 4641 10.1093/nar/27.23.4636 10556321
Overbeek R. Olson R. Pusch G.D. Olsen G.J. Davis J.J. Disz T. Edwards R.A. Gerdes S. Parrello B. Shukla M. et al. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST) Nucleic Acids Res. 2014 42 D206 D214 10.1093/nar/gkt1226
Stothard P. Wishart D.S. Circular genome visualization and exploration using CGView Bioinformatics 2005 21 537 539 10.1093/bioinformatics/bti054
Altschul S.F. Madden T.L. Schaffer A.A. Zhang J. Zhang Z. Miller W. Lipman D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs Nucleic Acids Res. 1997 25 3389 3402 10.1093/nar/25.17.3389
Madeira F. Park Y.M. Lee J. Buso N. Gur T. Madhusoodanan N. Basutkar P. Tivey A.R.N. Potter S.C. Finn R.D. et al. The EMBL-EBI search and sequence analysis tools APIs in 2019 Nucleic Acids Res. 2019 47 W636 W641 10.1093/nar/gkz268
Meier-Kolthoff J.P. Goker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy Nat. Commun. 2019 10 2182 10.1038/s41467-019-10210-3
Ondov B.D. Treangen T.J. Melsted P. Mallonee A.B. Bergman N.H. Koren S. Phillippy A.M. Mash: Fast genome and metagenome distance estimation using MinHash Genome Biol. 2016 17 132 10.1186/s13059-016-0997-x
Lagesen K. Hallin P. Rodland E.A. Staerfeldt H.H. Rognes T. Ussery D.W. RNAmmer: Consistent and rapid annotation of ribosomal RNA genes Nucleic Acids Res. 2007 35 3100 3108 10.1093/nar/gkm160
Camacho C. Coulouris G. Avagyan V. Ma N. Papadopoulos J. Bealer K. Madden T.L. BLAST plus: Architecture and applications BMC Bioinform. 2009 10 421 10.1186/1471-2105-10-421
Meier-Kolthoff J.P. Auch A.F. Klenk H.P. Goker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions BMC Bioinform. 2013 14 60 10.1186/1471-2105-14-60 23432962
Richter M. Rossello-Mora R. Glockner F.O. Peplies J. JSpeciesWS: A web server for prokaryotic species circumscription based on pairwise genome comparison Bioinformatics 2016 32 929 931 10.1093/bioinformatics/btv681 26576653
Livak K.J. Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method Methods 2001 25 402 408 10.1006/meth.2001.1262 11846609
Mazhar S.H. Herzberg M. Ben Fekih I. Zhang C.K. Bello S.K. Li Y.P. Su J.M. Xu J.Q. Feng R.W. Zhou S.G. et al. Comparative insights into the complete genome sequence of highly metal resistant Cupriavidus metallidurans strain BS1 isolated from a gold-copper mine Front. Microbiol. 2020 11 47 10.3389/fmicb.2020.00047
Amadou C. Pascal G. Mangenot S. Glew M. Bontemps C. Capela D. Carrere S. Cruveiller S. Dossat C. Lajus A. et al. Genome sequence of the beta-rhizobium Cupriavidus taiwanensis and comparative genomics of rhizobia Genome Res. 2008 18 1472 1483 10.1101/gr.076448.108 18490699
Janssen P.J. Van Houdt R. Moors H. Monsieurs P. Morin N. Michaux A. Benotmane M.A. Leys N. Vallaeys T. Lapidus A. et al. The complete genome sequence of Cupriavidus metallidurans strain CH34, a master survivalist in harsh and anthropogenic environments PLoS ONE 2010 5 e10433 10.1371/journal.pone.0010433 20463976
Wang X. Chen M. Xiao J. Hao L. Crowley D.E. Zhang Z. Yu J. Huang N. Huo M. Wu J. Genome sequence analysis of the naphthenic acid degrading and metal resistant bacterium Cupriavidus gilardii CR3 PLoS ONE 2015 10 e0132881 10.1371/journal.pone.0132881 26301592
Feng T. Kim K.H. Oh J. Jeon C.O. Cupriavidus lacunae sp. nov., isolated from pond-side soil Antonie Van Leeuwenhoek 2019 112 543 551 10.1007/s10482-018-1187-5
Abbaszade G. Szabo A. Vajna B. Farkas R. Szabo C. Toth E. Whole genome sequence analysis of Cupriavidus campinensis S14E4C, a heavy metal resistant bacterium Mol. Biol. Rep. 2020 47 3973 3985 10.1007/s11033-020-05490-8
Li X. Zhang L. Wang G. Genomic evidence reveals the extreme diversity and wide distribution of the arsenic-related genes in Burkholderiales PLoS ONE 2014 9 e92236 10.1371/journal.pone.0092236
Khan A.A. Ellis D.R. Huang X. Norton G.J. Meharg A.A. Salt D.E. Csonka L.N. Glutathione-S-transferase from the arsenic hyperaccumulator fern Pteris vittata can confer increased arsenate resistance in Escherichia coli bioRxiv 2018 10.1101/379511
Lopez-Maury L. Sanchez-Riego A.M. Reyes J.C. Florencio F.J. The glutathione/glutaredoxin system is essential for arsenate reduction in Synechocystis sp. strain PCC 6803 J. Bacteriol. 2009 191 3534 3543 10.1128/JB.01798-08
Hayes R.P. Lewis K.M. Xun L. Kang C. Catalytic mechanism of 5-chlorohydroxyhydroquinone dehydrochlorinase from the YCII superfamily of largely unknown function J. Biol. Chem. 2013 288 28447 28456 10.1074/jbc.M113.499368
Willis M.A. Song F. Zhuang Z. Krajewski W. Chalamasetty V.R. Reddy P. Howard A. Dunaway-Mariano D. Herzberg O. Structure of YciI from Haemophilus influenzae (HI0828) reveals a ferredoxin-like alpha/beta-fold with a histidine/aspartate centered catalytic site Proteins 2005 59 648 652 10.1002/prot.20411
Baker-Austin C. Wright M.S. Stepanauskas R. McArthur J.V. Co-selection of antibiotic and metal resistance Trends Microbiol. 2006 14 176 182 10.1016/j.tim.2006.02.006 16537105