Energy modelling; Open-source; Bolivia; Energy systems; PyPSA-Earth; Developing countries
Abstract :
[en] Bolivia is a developing country in South America which is slowly starting its energy transition towards more renewable technologies. However, at this moment, Institutions in charge of regulating, operating, and planning the development of the sector are still working with “black box” (or licensed) models, which are costly and less transparent, and are highly dependent on external expertise to formulate national plans. A proper transition will arguably require endogenous know-how and resources to be sustainable, affordable, and sovereign for the country.
In this context, open-source energy models are increasingly used in Bolivia, mostly by academic and non-profit institutions. These are used to study alternative development scenarios, quantify environmental impacts and/or define potential techno-economic requirements.
Previous works have focused on the development of dispatch models that analyse the stability and operation over short-terms and on energy-balance models to study impacts over long-term scenarios. However, while operation and planning aspects are somewhat covered independently, the combination of both is still missing (i.e. high time and spatial resolution and long-term horizon perspectives).
To bridge this gap the PyPSA-Earth model was identified and used to derive a model specific for the Bolivian context using a dedicated workflow. The model is adapted to run and provide country-specific outputs regarding generation capacities, grid expansion and sector-specific demands, which are later compared with historical information to assess its accuracy and capabilities.
Modelling results provide inputs regarding the characteristics of the tool and quantify deviations of its outputs compared to the Bolivian system in 2020. Based on these, it is concluded that the flexibility of the model, combined with its transparent structure, show great potential for implementation.
Pandey R., Energy policy modelling: agenda for developing countries. Energy Policy, vol. 30, no. 2, pp. 97-106, Jan. 2002, doi: 10.1016/S0301-4215(01)00062-3.
Bhattacharyya S. C., Timilsina G. R., A review of energy system models. International Journal of Energy Sector Management, vol. 4, no. 4, pp. 494-518, Nov. 2010, doi: 10.1108/17506221011092742.
Urban F., Benders R. M. J., and H. C. Moll, “Modelling energy systems for developing countries,” Energy Policy, 2007.
Pfenninger S., et al., Opening the black box of energy modelling: Strategies and lessons learned. Energy Strategy Reviews, vol. 19, pp. 63-71, Jan. 2018, doi: 10.1016/j.esr.2017.12.002.
Balza L. H., Espinasa R., Serebrisky T., Energy Needs in Latin America and the Caribbean to 2040.
Viceministerio de Electricidad y Energías Alternativas, Plan Eléctrico del Estado Plurinacional de Bolivia 2025. 2014.
Ministerio de Hidrocarburos y Energia, Plan Optimo de Expansion del Sistema Interconectado Nacional. 2012.
Philpott A., On models for estimating the effect on prices of CO2 charges. 2004.
Software | PSR - Energy Consulting and Analytics, Software | PSR - Energy Consulting and Analytics, Available at: https://www.psr-inc.com/softwares-en/ (accessed May 10, 2023).
PowerFactory - DIgSILENT. Available at: https://www.digsilent.de/en/powerfactory.html (accessed May 10, 2023).
Olasunkanmi O. G., Deng Z., Todeschini G., Load Flow Analysis of the Nigerian Transmission Grid Using DIgSILENT PowerFactory, 56th International Universities Power Engineering Conference (UPEC), Middlesbrough, United Kingdom: IEEE, Aug. 2021, pp. 1-6. doi: 10.1109/UPEC50034.2021.9548253.
HOMER - Hybrid Renewable and Distributed Generation System Design Software. Available at: https://www.homerenergy.com/ (accessed May 10, 2023).
Mahmud N., Hassan A., Rahman M. S., Modelling and cost analysis of hybrid energy system for St. Martin Island using HOMER, International Conference on Informatics, Electronics and Vision (ICIEV), Dhaka, Bangladesh: IEEE, May 2013, pp. 1-6. doi: 10.1109/ICIEV.2013.6572678.
IRENA, Summary Report - IRENA Regional Workshop on Long-term Energy Planning - Buenos Aires 2017. 2017.
Oberle S., Elsland R., Are open access models able to assess today's energy scenarios?. Energy Strategy Reviews, vol. 26, p. 100396, Nov. 2019, doi: 10.1016/j.esr.2019.100396.
Navia M., Orellana R., Zaráte S., Villazón M., Balderrama S., Quoilin S., Energy Transition Planning with High Penetration of Variable Renewable Energy in Developing Countries: The Case of the Bolivian Interconnected Power System, Energies, vol. 15, no. 3, p. 968, Jan. 2022, doi: 10.3390/en15030968.
Peña Balderrama J. G., et al., Incorporating high-resolution demand and techno-economic optimization to evaluate micro-grids into the Open Source Spatial Electrification Tool (OnSSET). Energy for Sustainable Development, vol. 56, pp. 98-118, Jun. 2020, doi: 10.1016/j.esd.2020.02.009.
Sanchez C., et al., The Energy Sufficiency Concept and Its Impact on Energy Demand Estimation in Rural Communities from Developing Countries, 2022.
Balderrama S., Lombardi F., Riva F., Canedo W., Colombo E., Quoilin S., A two-stage linear programming optimization framework for isolated hybrid microgrids in a rural context: The case study of the 'El Espino' community. Energy, vol. 188, p. 116073, Dec. 2019, doi: 10.1016/j.energy.2019.116073.
Fernandez Vazquez C. A. A., Brecha R. J., Fernandez Fuentes M. H., Analyzing carbon emissions policies for the Bolivian electric sector. Renewable and Sustainable Energy Transition, vol. 2, p. 100017, Aug. 2022, doi: 10.1016/j.rset.2022.100017.
Parzen M., et al., PyPSA-Earth. A New Global Open Energy System Optimization Model Demonstrated in Africa. arXiv, Sep. 10, 2022. Accessed: Mar. 14, 2023. [Online]. Available: http://arxiv.org/abs/2209.04663
Kirli D., et al., PyPSA meets Africa: Developing an open source electricity network model of the African continent, in 2021 IEEE AFRICON, Arusha, Tanzania, United Republic of: IEEE, Sep. 2021, pp. 1-6. doi: 10.1109/AFRICON51333.2021.9570911.
Hörsch J., Hofmann F., Schlachtberger D., Brown T., PyPSA-Eur: An open optimisation model of the European transmission system. Energy Strategy Reviews, vol. 22, pp. 207-215, Nov. 2018, doi: 10.1016/j.esr.2018.08.012.
Brown T., Hörsch J., Schlachtberger D., PyPSA: Python for Power System Analysis. JORS, vol. 6, no. 1, p. 4, Jan. 2018, doi: 10.5334/jors.188.
Pypsa-meets-earth/pypsa-earth: PyPSA-Earth: An Python-based Open Optimisation Model of the Earth Energy System. Available at: https://github.com/pypsa-meets-earth/pypsa-earth (accessed May 10, 2023).
Bolivia: Ley de Electricidad, 21 de diciembre de 1994. 1994.
Ministerio de Hidrocarburos y Energia, Balance Energetico Nacional 2006-2020. 2022.
E. M. Ayma, Bolivia: Decreto Supremo No 29644, 16 de julio de 2008. 2008.
CNDC, Memoria Anual 2020. 2021.
Ministerio de Hidrocarburos y Energia, Política de Energías Alternativas para el Sector Eléctrico en el Estado Plurinacional de Bolivia. 2012.
Ministerio de Planificacion del Desarrollo, Plan de Desarrollo Economico y Social 2021-2025. 2022.
Ministerio de Medio Ambiente y Aguas, Nationally Determined Contribution (NDC) of the Plurinational State Of Bolivia. 2022.
AETN, Anuario estadistico 2020. 2021.
AETN, Memoria anual 2020. 2021.
ENDE Transmision, Memoria Anual 2021. 2022.
“COMITE NACIONAL DE DESPACHO DE CARGA - CNDC. Available at: https://www.cndc.bo/agentes/generacion.php (accessed Mar. 19, 2023).
The structure - PyPSA-Earth 0.1.0 documentation. Available at: https://pypsaearth.readthedocs.io/en/latest/structure.html (accessed Mar. 16, 2023).
Mölder F., et al., Sustainable data analysis with Snakemake, F1000Res, vol. 10, p. 33, Jan. 2021, doi: 10.12688/f1000research.29032.1.
Climate Data Store. Available at: https://cds.climate.copernicus.eu/#!/home (accessed Mar. 17, 2023).
Protected Areas (WDPA), Protected Planet. Available at: https://www.protectedplanet.net/en/thematicareas/wdpa?tab=WDPA (accessed Mar. 17, 2023).
OpenStreetMap, OpenStreetMap. Available at: https://www.openstreetmap.org/about (accessed Mar. 18, 2023).
Hersbach H., et al., The ERA5 global reanalysis. Q.J.R. Meteorol. Soc., vol. 146, no. 730, pp. 1999-2049, Jul. 2020, doi: 10.1002/qj.3803.
HydroBASINS. Available at: https://www.hydrosheds.org/products/hydrobasins (accessed Mar. 18, 2023).
Kummu M., Taka M., Guillaume J. H. A., Gridded global datasets for Gross Domestic Product and Human Development Index over 1990-2015. Sci Data, vol. 5, no. 1, p. 180004, Feb. 2018, doi: 10.1038/sdata.2018.4.
Riahi K., et al., The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environmental Change, vol. 42, pp. 153-168, Jan. 2017, doi: 10.1016/j.gloenvcha.2016.05.009.
Crecimiento del PIB (% anual) - Bolivia | Data. Available at: https://datos.bancomundial.org/indicador/NY.GDP.MKTP.KD.ZG?end=2021&locations=BO&start=2010 (accessed Mar. 21, 2023).
Crecimiento del PIB (% anual) - Latin America & Caribbean | Data. Available at: https://datos.bancomundial.org/indicator/NY.GDP.MKTP.KD.ZG?end=2021&locations=ZJ&start=2010 (accessed Mar. 21, 2023).