Ab initio simulations; Based modelling; Edge state; Electrical control; Electrical manipulation; Quantum spin halls; Spin hall insulator; Spin orientations; Spin-polarized; Topological currents; Electronic, Optical and Magnetic Materials; Condensed Matter Physics
Abstract :
[en] We evidence the possibility for coherent electrical manipulation of the spin orientation of topologically protected edge states in a low-symmetry quantum spin Hall insulator. By using a combination of ab initio simulations, symmetry-based modeling, and large-scale calculations of the spin Hall conductivity, it is shown that small electric fields can efficiently vary the spin textures of edge currents in monolayer 1T'-WTe2 by up to a 90-degree spin rotation, without jeopardizing their topological character. These findings suggest a new kind of gate-controllable spin-based device, topologically protected against disorder and of relevance for the development of topological spintronics.
Research Center/Unit :
CESAM - Complex and Entangled Systems from Atoms to Materials - ULiège
Disciplines :
Physics
Author, co-author :
Garcia, Jose H. ; Catalan Institute of Nanoscience and Nanotechnology - ICN2, (CSIC and BIST), Campus UAB, Barcelona, Spain
You, Jinxuan ; Catalan Institute of Nanoscience and Nanotechnology - ICN2, (CSIC and BIST), Campus UAB, Barcelona, Spain ; Simune Atomistics S.L., Donostia-San Sebastian, Spain ; Department of Materials Science, Universitat Autónoma de Barcelona, Cerdanyola del Vallés, Spain
Ordejón, Pablo; Catalan Institute of Nanoscience and Nanotechnology - ICN2, (CSIC and BIST), Campus UAB, Barcelona, Spain
Cuadrado, Ramón; Catalan Institute of Nanoscience and Nanotechnology - ICN2, (CSIC and BIST), Campus UAB, Barcelona, Spain ; School of Chemistry, University of Southampton, Southampton, United Kingdom
Verstraete, Matthieu ; Université de Liège - ULiège > Département de physique > Physique des matériaux et nanostructures
Zanolli, Zeila ; Université de Liège - ULiège > Département de physique > Physique des matériaux et nanostructures ; Department of Chemistry, Debye Institute for Nanomaterials Science, ETSF, Utrecht University, Netherlands
Roche, Stephan; Catalan Institute of Nanoscience and Nanotechnology - ICN2, (CSIC and BIST), Campus UAB, Barcelona, Spain ; ICREA-Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
Language :
English
Title :
Electrical control of spin-polarized topological currents in monolayer WTe2
AEI - Agencia Estatal de Investigación ERDF - European Regional Development Fund MINECO - Gobierno de Espana. Ministerio de Economia y Competitividad NWO - Nederlandse Organisatie voor Wetenschappelijk Onderzoek OCW - Ministerie van Onderwijs, Cultuur en Wetenschap EU - European Union BSC - Barcelona Supercomputing Center F.R.S.-FNRS - Fonds de la Recherche Scientifique Generalitat de Catalunya
Funding text :
Acknowledgments. Supported by the EU H2020 Programme under Grants No. 881603 (Graphene Flagship), No 824140 (TOCHA, H2020-FETPROACT-01-2018), and No. 824143 (MaX Materials Design at the Exascale CoE) and by Sgrants PGC2018- 096955-B-C43 funded by MCIN/AEI/ 10.13039/501100011033 and by ERDF A way of making Europe and PCI2018-093120 funded by MCIN/AEI/ 10.13039/501100011033. Z.Z. acknowledges financial support by the by the Ramon y Cajal program RYC-2016-19344 (MINECO/AEI/FSE, UE), Netherlands Sector Plan program 20192023 and the NWO Gravitation programme “Materials for the Quantum Age” (QuMat) funded by the Ministry of Education, Culture and Science of the government of the Netherlands. R.C. acknowledges the funding from the EU H2020 Programme under the Marie Sklodoswka–Curie Grant No. 665919. J.Y., P.K., M.G.M., and Z.Z. acknowledge the computer resources at MareNostrum and the technical support provided by the Barcelona Supercomputing Center through Red Española de Supercomputación (Grants No. RES-FI-2020-1-0018, No. RES-FI-2020-1-0014, and No. RES-FI-2020-2-0039). M.J.V. acknowledges the Fonds de la Recherche Scientifique (FRS-FNRS Belgium) for PdR Grant No. T.0103.19 - ALPS, and ARC project DREAMS (G.A. 21/25-11) funded by Fedeŕation Wallonie Bruxelles and ULieǵe. ICN2 is funded by the Generalitat de Catalunya (CERCA Programme and Grants No. 2017SGR1506 and No. 2017SGR692), and is supported by the Severo Ochoa Centers of Excellence Program from Spanish MINECO under Grant No. SEV-2017-0706. We acknowledge a PRACE award granting access to MareNostrum4 at Barcelona Supercomputing Center (BSC), Spain (OptoSpin project id. 2020225411).
Z. Fei, T. Palomaki, S. Wu, W. Zhao, X. Cai, B. Sun, P. Nguyen, J. Finney, X. Xu, and D. H. Cobden, Nat. Phys. 13, 677 (2017) 1745-2473 10.1038/nphys4091.
S. Wu, V. Fatemi, Q. D. Gibson, K. Watanabe, T. Taniguchi, R. J. Cava, and P. Jarillo-Herrero, Science 359, 76 (2018) 0036-8075 10.1126/science.aan6003.
M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010) 0034-6861 10.1103/RevModPhys.82.3045.
J. Sinova, S. O. Valenzuela, J. Wunderlich, C. H. Back, and T. Jungwirth, Rev. Mod. Phys. 87, 1213 (2015) 0034-6861 10.1103/RevModPhys.87.1213.
S. A. Yang, Spin 06, 1640003 (2016) 2010-3247 10.1142/S2010324716400038.
C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005) 0031-9007 10.1103/PhysRevLett.95.226801.
C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005) 0031-9007 10.1103/PhysRevLett.95.146802.
B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science 314, 1757 (2006) 0036-8075 10.1126/science.1133734.
B. A. Bernevig, J. Orenstein, and S.-C. Zhang, Phys. Rev. Lett. 97, 236601 (2006) 0031-9007 10.1103/PhysRevLett.97.236601.
M. Vila, J. H. Garcia, and S. Roche, Phys. Rev. B 104, L161113 (2021) 2469-9950 10.1103/PhysRevB.104.L161113.
D. N. Sheng, Z. Y. Weng, L. Sheng, and F. D. M. Haldane, Phys. Rev. Lett. 97, 036808 (2006) 0031-9007 10.1103/PhysRevLett.97.036808.
A. Ström, H. Johannesson, and G. I. Japaridze, Phys. Rev. Lett. 104, 256804 (2010) 0031-9007 10.1103/PhysRevLett.104.256804.
T. L. Schmidt, S. Rachel, F. von Oppen, and L. I. Glazman, Phys. Rev. Lett. 108, 156402 (2012) 0031-9007 10.1103/PhysRevLett.108.156402.
J. Schliemann, Rev. Mod. Phys. 89, 011001 (2017) 0034-6861 10.1103/RevModPhys.89.011001.
L. L. Tao and E. Y. Tsymbal, Nat. Commun. 9, 2763 (2018) 2041-1723 10.1038/s41467-018-05137-0.
J. H. Garcia, M. Vila, C.-H. Hsu, X. Waintal, V. M. Pereira, and S. Roche, Phys. Rev. Lett. 125, 256603 (2020) 0031-9007 10.1103/PhysRevLett.125.256603.
M. Vila, C.-H. Hsu, J. H. Garcia, L. A. Benítez, X. Waintal, S. O. Valenzuela, V. M. Pereira, and S. Roche, Phys. Rev. Res. 3, 043230 (2021) 2643-1564 10.1103/PhysRevResearch.3.043230.
W. Zhao, E. Runburg, Z. Fei, J. Mutch, P. Malinowski, B. Sun, X. Huang, D. Pesin, Y.-T. Cui, X. Xu, J.-H. Chu, and D. H. Cobden, Phys. Rev. X 11, 041034 (2021) 2160-3308 10.1103/PhysRevX.11.041034.
C. Tan, M.-X. Deng, G. Zheng, F. Xiang, S. Albarakati, M. Algarni, L. Farrar, S. Alzahrani, J. Partridge, J. B. Yi, A. R. Hamilton, R.-Q. Wang, and L. Wang, Nano Lett. 21, 9005 (2021) 1530-6984 10.1021/acs.nanolett.1c02329.
F. Giustino, J. H. Lee, F. Trier, M. Bibes, S. M. Winter, R. Valentí, Y.-W. Son, L. Taillefer, C. Heil, A. I. Figueroa, B. Plaçais, Q. Wu, O. V. Yazyev, E. P. A. M. Bakkers, J. Nygård, P. Forn-Díaz, S. D. Franceschi, J. W. McIver, L. E. F. F. Torres, T. Low, and Journal of Physics: Materials 3, 042006 (2020) 2515-7639 10.1088/2515-7639/abb74e.
J. F. Sierra, J. Fabian, R. K. Kawakami, S. Roche, and S. O. Valenzuela, Nat. Nanotechnol. 16, 856 (2021) 1748-3387 10.1038/s41565-021-00936-x.
H. Min, J. E. Hill, N. A. Sinitsyn, B. R. Sahu, L. Kleinman, and A. H. MacDonald, Phys. Rev. B: Condens. Matter Mater. Phys. 74, 165310 (2006) 1098-0121 10.1103/PhysRevB.74.165310.
J. Xia, W. Ge, and K. Chang, Semiconductor Spintronics (World Scientific Publishing Company, Singapore, 2012).
J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki, Phys. Rev. Lett. 78, 1335 (1997) 0031-9007 10.1103/PhysRevLett.78.1335.
J. R. Bindel, M. Pezzotta, J. Ulrich, M. Liebmann, E. Y. Sherman, and M. Morgenstern, Nat. Phys. 12, 920 (2016) 1745-2473 10.1038/nphys3774.
K. Premasiri, S. K. Radha, S. Sucharitakul, U. R. Kumar, R. Sankar, F. C. Chou, Y. T. Chen, and X. P. Gao, Nano Lett. 18, 4403 (2018) 1530-6984 10.1021/acs.nanolett.8b01462.
Y. Wang, E. Liu, H. Liu, Y. Pan, L. Zhang, J. Zeng, Y. Fu, M. Wang, K. Xu, Z. Huang, Z. Wang, H. Lu, D. Xing, B. Wang, X. Wan, and F. Miao, Nat. Commun. 7, 13142 (2016) 2041-1723 10.1038/ncomms13142.
E. Zhang, R. Chen, C. Huang, J. Yu, K. Zhang, W. Wang, S. Liu, J. Ling, X. Wan, H. Z. Lu, and F. Xiu, Nano Lett. 17, 878 (2017) 1530-6984 10.1021/acs.nanolett.6b04194.
S. Y. Xu, Q. Ma, H. Shen, V. Fatemi, S. Wu, T. R. Chang, G. Chang, A. M. Valdivia, C. K. Chan, Q. D. Gibson, J. Zhou, Z. Liu, K. Watanabe, T. Taniguchi, H. Lin, R. J. Cava, L. Fu, N. Gedik, and P. Jarillo-Herrero, Nat. Phys. 14, 900 (2018) 1745-2473 10.1038/s41567-018-0189-6.
Y. Maximenko, Y. Chang, G. Chen, M. R. Hirsbrunner, W. Swiech, T. L. Hughes, L. K. Wagner, and V. Madhavan, npj Quantum Mater. 7, 29 (2022) 2397-4648 10.1038/s41535-022-00433-x.
L.-k. Shi and J. C. W. Song, Phys. Rev. B 99, 035403 (2019) 2469-9950 10.1103/PhysRevB.99.035403.
S. Ok, L. Muechler, D. Di Sante, G. Sangiovanni, R. Thomale, and T. Neupert, Phys. Rev. B 99, 121105 (R) (2019) 2469-9950 10.1103/PhysRevB.99.121105.
M. O. Goerbig, J. N. Fuchs, G. Montambaux, and F. Piechon, Phys. Rev. B: Condens. Matter Mater. Phys. 78, 045415 (2008) 1098-0121 10.1103/PhysRevB.78.045415.
H. Huang, S. Zhou, and W. Duan, Phys. Rev. B 94, 121117 (R) (2016) 2469-9950 10.1103/PhysRevB.94.121117.
J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002) 0953-8984 10.1088/0953-8984/14/11/302.
A. García, N. Papior, A. Akhtar, E. Artacho, V. Blum, E. Bosoni, P. Brandimarte, M. Brandbyge, J. I. Cerda, F. Corsetti, J. Chem. Phys. 152, 204108 (2020) 0021-9606 10.1063/5.0005077.
A. García, M. J. Verstraete, Y. Pouillon, and J. Junquera, Comput. Phys. Commun. 227, 51 (2018) 0010-4655 10.1016/j.cpc.2018.02.011.
M. van Setten, M. Giantomassi, E. Bousquet, M. Verstraete, D. Hamann, X. Gonze, and G.-M. Rignanese, Comput. Phys. Commun. 226, 39 (2018) 0010-4655 10.1016/j.cpc.2018.01.012.
E. Artacho, D. Sánchez-Portal, P. Ordejón, A. García, and J. M. Soler, phys. stat. sol. (b) 215, 809 (1999) 0370-1972 10.1002/(SICI)1521-3951(199909)215:1%3C809::AID-PSSB809%3E3.0.CO;2-0.
L. A. Hemstreet, C. Y. Fong, and J. S.Nelson, Phys. Rev. B 47, 4238 (1993) 0163-1829 10.1103/PhysRevB.47.4238.
R. Cuadrado and J. I.. Cerdá, J. Phys.: Condens. Matter 24, 086005 (2012) 0953-8984 10.1088/0953-8984/24/8/086005.
R. Cuadrado, R. Robles, A. García, M. Pruneda, P. Ordejón, J. Ferrer, and J. I. Cerdá, Phys. Rev. B 104, 195104 (2021) 10.1103/PhysRevB.104.195104.
B. E. Brown, Acta Crystallogr. 20, 268 (1966) 0365-110X 10.1107/S0365110X66000513.
See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevB.106.L161410 for details of the model and a discussion on the symmetries.
We higlight the fact that the angles in [16], [18] and [19] are defined differently, but when measured within the same reference they are quite close.
A. Bastin, C. Lewiner, O. Betbeder-matibet, and P. Nozieres, J. Phys. Chem. Solids 32, 1811 (1971) 0022-3697 10.1016/S0022-3697(71)80147-6.
A. Cresti, B. K. Nikolić, J. H. García, and S. Roche, Riv. Nuovo Cimento 39, 587 (2016) 10.1393/ncr/i2016-10130-6.
Z. Fan, J. H. Garcia, A. W. Cummings, J. E. Barrios-Vargas, M. Panhans, A. Harju, F. Ortmann, and S. Roche, Phys. Rep. 903, 1 (2021), linear scaling quantum transport methodologies 0370-1573 10.1016/j.physrep.2020.12.001.
J. H. García, L. Covaci, and T. G. Rappoport, Phys. Rev. Lett. 114, 116602 (2015) 0031-9007 10.1103/PhysRevLett.114.116602.
J. H. Garcia, M. Vila, A. W. Cummings, and S. Roche, Chem. Soc. Rev. 47, 3359 (2018) 0306-0012 10.1039/C7CS00864C.