Global warming; Greenhouse gases emissions; Land use; Quality evaluation; Spatiotemporal effects; Agricultural land; CH 4; Greenhouse gas emissions; Greenhouses gas; Land conversion; Landuse change; Meta-analysis; Spatial effect; Environmental Engineering; Environmental Chemistry; Waste Management and Disposal; Pollution
Abstract :
[en] Greenhouse gases (GHG) have extensive environmental effects by trapping heat and causing climate change and air pollution. Land plays a key role in the global cycles of GHG (i.e., carbon dioxide (CO2), methane (CH4), and nitrogen oxide (N2O)), and land use change (LUC) can lead to the release of such gases into the atmosphere or the removal of them from the atmosphere. One of the most common forms of LUC is agricultural land conversion (ALC) where agricultural lands are converted for other uses. This study aimed to review 51 original papers from 1990 to 2020 that investigate the contribution of ALC to GHG emissions from a spatiotemporal perspective using a meta-analysis method. The results of spatiotemporal effects on GHG emissions showed that the effects were significant. The emissions were affected by different continent regions representing the spatial effects. The most significant spatial effect was relevant to African and Asian countries. In addition, the quadratic relationship between ALC and GHG emissions had the highest significant coefficients, showing an upward concave curve. Therefore, increasing ALC to more than 8 % of available land led to increasing GHG emissions during the economic development process. The implications of the current study are important for policymakers from two perspectives. First, to achieve sustainable economic development, policymaking should prevent the conversion of more than 90 % of agricultural land to other uses based on the turning point of the second model. Second, policies to control global GHG emissions should take into account spatial effects (e.g., continental Africa and Asia), which show the highest contribution to GHG emissions.
Disciplines :
Agriculture & agronomy
Author, co-author :
Huang, Shansong; Faculty of Applied Science, The University of British Columbia, Vancouver, BC, Canada
Azadi, Hossein ; Université de Liège - ULiège > TERRA Research Centre > Modélisation et développement
Movahhed Moghaddam, Saghi; Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
Viira, Ants-Hannes; Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
Janečková, Kristina; Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
Sklenička, Petr; Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
Lopez-Carr, David; Department of Geography, University of California, Santa Barbara, United States
Köhl, Michael; Center for Earth System Research & Sustainability (CEN), World Forestry, University of Hamburg, Hamburg, Germany
Kurban, Alishir; State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 818 South Beijing Road, Urumqi, Xinjiang, 830011, China, Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, 818 South Beijing Road, Urumqi, Xinjiang, 830011, China, University of Chinese Academy of Sciences, Beijing 100049, China, Sino-Belgian Joint Laboratory for Geo-Information, Urumqi, 830011 China, Sino-Belgian Joint Laboratory for Geo-Information, Ghent, B-9000, Belgium. Electronic address: alishir@ms.xjb.ac.cn
Language :
English
Title :
Contribution of agricultural land conversion to global GHG emissions: A meta-analysis.
Chinese Academy of Sciences ČZU - Ceska Zemedelska Univerzita v Praze NSCF - National Natural Science Foundation of China
Funding text :
This work was partly supported by the Internal Grant Agency of the Faculty of Environmental Sciences, Czech University of Life Sciences Prague (project No. 2022B0008 ); National Natural Science Foundation of China (Grant Number: 32071655 ; 42230708 ); Chinese Academy of Sciences President's International Fellowship Initiative, PIFI (Grant Number: 2021VCA0004 ).
Alexander, P., Rabin, S., Anthoni, P., Henry, R., Pugh, T.A.M., Rounsevell, M.D.A., Arneth, A., Adaptation of global land use and management intensity to changes in climate and atmospheric carbon dioxide. Glob. Chang. Biol. 24:7 (2018), 2791–2809, 10.1111/gcb.14110.
Ali, Y., Ciaschini, M., Socci, C., Pretaroli, R., Severini, F., An analysis of CO2 emissions in Italy through the macro multiplier (MM) approach. J. Clean. Prod. 149 (2017), 238–250, 10.1016/j.jclepro.2017.02.094.
Amanuel, W., Yimer, F., Karltun, E., Soil organic carbon variation in relation to land use changes: the case of Birr watershed, upper Blue Nile River Basin, Ethiopia. J. Ecol. Environ. 42:1 (2018), 1–11, 10.1186/s41610-018-0076-1.
Amos, E., Akpan, U., Ogunjobi, K., Households’ perception and livelihood vulnerability to climate change in a coastal area of Akwa Ibom state, Nigeria. Environ. Dev. Sustain., 17, 2015, 887, 10.1007/s10668-014-9580-3.
Anav, A., Friedlingstein, P., Kidston, M., Bopp, L., Ciais, P., Cox, P., Zhu, Z., Evaluating the land and ocean components of the global carbon cycle in the CMIP5 earth system models. J. Clim. 26:18 (2013), 6801–6843, 10.1175/JCLI-D-12-00417.1.
Arneth, A., Sitch, S., Pongratz, J., Stocker, B.D., Ciais, P., Poulter, B., Zaehle, S., Historical carbon dioxide emissions caused by land-use changes are possibly larger than assumed. Nat. Geosci. 10:2 (2017), 79–84, 10.1038/ngeo2882.
Avitabile, V., Herold, M., et al. Carbon emissions from land cover change in Central Vietnam. Carbon Manag. 7:5-6 (2016), 1–14, 10.1080/17583004.2016.1254009.
Azadi, H., Ho, P., Hasfiati, L., Agricultural land conversion drivers: a comparison between less developed, developing and developed countries. Land Degrad. Dev. 22 (2011), 596–604, 10.1002/ldr.1037.
Azadi, H., Keramati, P., Taheri, F., Rafiaani, P., Teklemariam, D., Gebrehiwot, K., Witlox, F., Agricultural land conversion: reviewing drought impacts and coping strategies. Int. J. Disaster Risk Reduct. 31 (2018), 184–195, 10.1016/j.ijdrr.2018.05.003.
Azadi, H., Taheri, F., Burkart, S., Mahmoudi, H., De Maeyer, P., Witlox, F., Impact of agricultural land conversion on climate change. Environ. Dev. Sustain., 2020, 10.1007/s10668-020-00712-2.
Baloch, M.A., Danish, Khan, S.U.-D., Ulucak, Z.Ş., Analyzing the relationship between poverty, income inequality, and CO2 emission in Sub-Saharan African countries. Sci. Total Environ., 740, 2020, 139867, 10.1016/j.scitotenv.2020.139867.
Balsalobre-Lorente, D., Shahbaz, M., Roubaud, D., Farhani, S., How economic growth, renewable electricity and natural resources contribute to CO2 emissions?. Energy Policy 113 (2018), 356–367, 10.1016/j.enpol.2017.10.050.
Barati, A.A., Asadi, A., Kalantari, K., Azadi, H., Witlox, F., Agricultural land conversion in Northwest Iran. Int. J. Environ. Res. 9:1 (2015), 281–290 10.22059/IJER.2015.898.
Becker, S., Bouzdine-Chameeva, T., Jaegler, A., The carbon neutrality principle: a case study in the french spirits sector. J. Clean. Prod., 274, 2020, 122739, 10.1016/j.jclepro.2020.122739.
Beidler, K.V., Pritchard, S.G., Maintaining connectivity: understanding the role of root order and mycelial networks in fine root decomposition of woody plants. Plant Soil 420:1–2 (2017), 19–36, 10.1007/s11104-017-3393-8.
Bonini, I., Hur Marimon-Junior, B., Matricardi, E., Phillips, O., Petter, F., Oliveira, B., Marimon, B.S., Collapse of ecosystem carbon stocks due to forest conversion to soybean plantations at the Amazon-cerrado transition. For. Ecol. Manag. 414 (2018), 64–73, 10.1016/j.foreco.2018.01.038.
Boonyanam, N., Agricultural economic zones in Thailand. Land Use Policy, 2018, 10.1016/j.landusepol.2017.05.023.
Boysen, L.R., Lucht, W., Gerten, D., Heck, V., Lenton, T.M., Schellnhuber, H.J., The limits to global-warming mitigation by terrestrial carbon removal. Earth's Future 5:5 (2017), 463–474, 10.1002/2016EF000469.
Busko, M., Szafranska, B., Analysis of changes in land use patterns pursuant to the conversion of agricultural land to non-agricultural use in the context of the sustainable development of the malopolska region. Sustainability, 10(2), 2018, 136, 10.3390/su10010136.
Calvin, K.V., Beach, R., Gurgel, A., Labriet, M., Loboguerrero Rodriguez, A.M., Agriculture, forestry, and other land-use emissions in Latin America. Energy Econ. 56 (2016), 615–624, 10.1016/j.eneco.2015.03.020.
Canedoli, C., Ferrè, C., El Khair, D.A., Padoa-Schioppa, E., Comolli, R., Soil organic carbon stock in different urban land uses: high stock evidence in urban parks. Urban Ecosyst., 2019, 10.1007/s11252-019-00901-6.
Carrión-Flores, C., Irwin, E.G., A fixed effects logit model of rural land conversion and zoning. Ann. Reg. Sci. 58:1 (2016), 181–208, 10.1007/s00168-016-0796-z.
Dale, V.H., The relationship between land-use change and climate change. Ecol. Appl. 7:3 (1997), 753–769, 10.1890/1051-0761(1997)007[0753:TRBLUC]2.0.CO;2.
De la Croix, D., Gobbi, P.E., Population density, fertility, and demographic convergence in developing countries. J. Dev. Econ. 127 (2017), 13–24, 10.1016/j.jdeveco.2017.02.003.
Delbeke, J., Vis, P., EU Climate Policy Explained. 2016, s.l.:Routledge.
Dong, N., You, L., Cai, W., Li, G., Lin, H., Land use projections in China under global socioeconomic and emission scenarios: utilizing a scenario-based land-use change assessment framework. Glob. Environ. Chang. 50 (2018), 164–177, 10.1016/j.gloenvcha.2018.04.001.
Dong, N., Liu, Z., Luo, M., Fang, C., Lin, H., The effects of anthropogenic land use changes on climate in China driven by global socioeconomic and emission scenarios. Earth's Future 7:7 (2019), 784–804, 10.1029/2018EF000932.
Duxbury, J.M., The significance of agricultural sources of greenhouse gases. Fertil. Res. 38:2 (1994), 151–163, 10.1007/BF00748775.
Epp, S., Drake, E., Caldwell, W., Farming Our Future: Measuring Farmland Conversion in Wellington County. 2017, School of Environmental Design and Rural Development, Ontario Agricultural College, University of Guelph, Guelph, ON Canada.
FAO, FAOSTAT. Land Use. Agricultural Land. 2017.
Farina, R., Marchetti, A., Francaviglia, R., Napoli, R., Bene, C.D., Modeling regional soil C stocks and CO2 emissions under Mediterranean cropping systems and soil types. Agric. Ecosyst. Environ. 238 (2017), 128–141, 10.1016/j.agee.2016.08.015.
Fernández Fernández, Y., Fernández López, M.A., Olmedillas Blanco, B., Innovation for sustainability: The impact of R&D spending on CO2 emissions. J. Clean. Prod. 172 (2018), 3459–3467, 10.1016/j.jclepro.2017.11.001.
Frank, S., Havlík, P., Stehfest, E., van Meijl, H., Witzke, P., Pérez-Domínguez, I., Valin, H., Agricultural non-CO2 emission reduction potential in the context of the 1.5 °C target. Nat. Clim. Chang. 9 (2018), 66–72, 10.1038/s41558-018-0358-8.
Fu, B., Wu, M., Che, Y., Yang, K., Effects of land-use changes on city-level net carbon emissions based on a coupled model. Carbon Manag. 8:3 (2017), 245–262, 10.1080/17583004.2017.1314704.
Galinato, G.I., Galinato, S.P., The effects of government spending on deforestation due to agricultural land expansion and CO2 related emissions. Ecol. Econ. 122 (2016), 43–53, 10.1016/j.ecolecon.2015.10.025.
Gocht, A., Espinosa, M., Leip, A., Lugato, E., Schroeder, L.A., Van Doorslaer, B., Paloma, S.G.V., A grassland strategy for farming systems in Europe to mitigate GHG emissions—an integrated spatially differentiated modelling approach. Land Use Policy 58 (2016), 318–334, 10.1016/j.landusepol.2016.07.024.
Grundy, M.J., Bryan, B.A., Nolan, M., Battaglia, M., Hatfield-Dodds, S., Connor, J.D., Keating, B.A., Scenarios for Australian agricultural production and land use to 2050. Agric. Syst. 142 (2016), 70–83, 10.1016/j.agsy.2015.11.008.
Harris, Z.M., Spake, R., Taylor, G., Land use change to bioenergy: a meta-analysis of soil carbon and GHG emissions. Biomass Bioenergy 82 (2015), 27–39, 10.1016/j.biombioe.2015.05.008.
Houghton, A.H., House, J.I., Pongratz, J., Van Der Werf, G.R., Defries, R.S., Hansen, M.C., Ramankutty, N., Carbon emissions from land use and land-cover change. Biogeosciences 9:1 (2012), 5125–5142, 10.5194/bg-9-5125-2012.
Hurtt, G.C., Chini, L.P., Frolking, S., Betts, R.A., Feddema, J., Fischer, G., Wang, Y.P., Harmonization of land use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim. Chang. 109 (2011), 117–161, 10.1007/s10584-011-0153-2.
Ibrahim, M.D., Alola, A.A., Integrated analysis of energy-economic development-environmental sustainability nexus: case study of MENA countries. Sci. Total Environ., 2020, 139768, 10.1016/j.scitotenv.2020.139768.
Inubushi, K., Furukawa, Y., Hadi, A., Purnomo, E., Tsuruta, H., Seasonal changes of CO2, CH4 and N2O fluxes in relation to land-use change in tropical peatlands located in coastal area of South Kalimantan. Chemosphere 52:3 (2003), 603–608, 10.1016/S0045-6535(03)00242-X.
IPCC, Guidelines for National Greenhouse Gas Inventories, National Greenhouse Gas Inventories Programme. 2006, IGES, Japan.
IPCC, Climate change 2014: synthesis report. Pachauri, R.K., Meyer, L.A., (eds.) Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 2014, IPCC, Geneva, Switzerland.
IPCC, Working Group III Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Summary for Policymakers. 2022.
Iqbal, J., Ronggui, H., Lijun, D., Lan, L., Shan, L., Tao, C., Leilei, R., Differences in soil CO2 flux between different land use types in mid-subtropical China. Soil Biol. Biochem. 40:9 (2008), 2324–2333, 10.1016/j.soilbio.2008.05.010.
Ishizuka, S., Tsuruta, H., Murdiyarso, D., An intensive field study on CO2, CH4, and N2O emissions from soils at four land-use types in Sumatra, Indonesia. Glob. Biogeochem. Cycles, 16(3), 2002, 10.1029/2001GB001614 22–1–22–11.
Joolaie, R., Abedi Sarvestani, A., Taheri, F., Van Passel, S., Azadi, H., Sustainable cropping pattern in North Iran: application of fuzzy goal programming. Environ. Dev. Sustain. 19:6 (2016), 2199–2216, 10.1007/s10668-016-9849-9.
Kaul, M., Dadhwal, V.K., Mohren, G.M.J., Land use change and net C flux in Indian forests. For. Ecol. Manag. 258:2 (2009), 100–108, 10.1016/j.foreco.2009.03.049.
Khan, M.K., Teng, J.-Z., Khan, M.I., Khan, M.O., Impact of globalization, economic factors and energy consumption on CO2 emissions in Pakistan. Sci. Total Environ., 2019, 10.1016/j.scitotenv.2019.06.065.
King, A.D., Harrington, L.J., The inequality of climate change from 1.5 to 2°C of global warming. Geophys. Res. Lett. 45:10 (2018), 5030–5033, 10.1029/2018GL078430.
Kruseman, G., Mottaleb, K.A., Tesfaye, K., Bairagi, S., Robertson, R., Mandiaye, D., Prager, S., Rural transformation and the future of cereal-based agri-food systems. Glob. Food Sec., 26, 2020, 100441, 10.1016/j.gfs.2020.100441.
Lai, L., Huang, X., Yang, H., Chuai, X., Zhang, M., Zhong, T., Thompson, J.R., Carbon emissions from land-use change and management in China between 1990 and 2010. Sci. Adv., 2(11), 2016, 10.1126/sciadv.1601063.
Lanz, B., Dietz, S., Swanson, T., Global economic growth and agricultural land conversion under uncertain productivity improvements in agriculture. Am. J. Agric. Econ. 100:2 (2017), 545–569, 10.1093/ajae/aax078.
Le Quéré, C., Andrew, R.M., Friedlingstein, P., Sitch, S., Pongratz, J., Manning, A.C., Zhu, D., Global carbon budget 2017. Earth Syst. Sci. Data Discuss., 2017, 10.5194/essd-2017-123.
Liu, X., Liang, X., Li, X., Xu, X., Ou, J., Chen, Y., Pei, F., A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan. 168 (2017), 94–116, 10.1016/j.landurbplan.2017.09.019.
Long, J.S., Freese, J., Regression Models for Categorical Dependent Variables Using Stata. 3rd ed., 2014, Stata Press, College Station, Texas.
Meemken, E.-M., Do smallholder farmers benefit from sustainability standards? A systematic review and meta-analysis. Glob. Food Sec., 26, 2020, 100373, 10.1016/j.gfs.2020.100373.
Miphokasap, P., Spatial inventory of CO2 emissions and removals from land use and land use changes in Thailand. Chem. Eng. Trans. 56 (2017), 13–18, 10.3303/CET1756003.
Muyanga, M., Jayne, T.S., Burke, W.J., Pathways into and out of poverty: a study of rural household wealth dynamics in Kenya. J. Dev. Stud. 49 (2013), 37–41, 10.1080/00220388.2013.812197.
Nguyen, T.H.T., Tran, V.T., Bui, Q.T., Man, Q.H., Walter, T.de V., Socio-economic effects of agricultural land conversion for urban development: case study of Hanoi, Vietnam. Land Use Policy 54 (2016), 583–592, 10.1016/j.landusepol.2016.02.032.
Nugroho, A.T., Sudrajat, S., Quantification of agricultural land balance sheet of Purworejo District in 2009 and 2018. E3S Web Conf., 200, 2020, 03010, 10.1051/e3sconf/202020003010.
Nyawira, S.S., Nabel, J.E.M.S., Don, A., Brovkin, V., Pongratz, J., Soil carbon response to land-use change: evaluation of a global vegetation model using observational meta-analyses. Biogeosciences 13:19 (2016), 5661–5675, 10.5194/bg-13-5661-2016.
O'Leary, B.C., Kvist, K., Bayliss, H.R., Derroire, G., Healey, J.R., Hughes, K., Pullin, A.S., The reliability of evidence review methodology in environmental science and conservation. Environ. Sci. Pol. 64 (2016), 75–82, 10.1016/j.envsci.2016.06.012.
O'Shea, R., Lin, R., Wall, D.M., Browne, J.D., Murphy, J.D., Using biogas to reduce natural gas consumption and greenhouse gas emissions at a large distillery. Appl. Energy, 279, 2020, 115812, 10.1016/j.apenergy.2020.115812.
de Oliveira, T.E., de Freitas, D.S., Gianezini, M., Ruviaro, C.F., Zago, D., Mércio, T.Z., Barcellos, J.O.J., Agricultural land use change in the Brazilian Pampa Biome: the reduction of natural grasslands. Land Use Policy 63 (2017), 394–400, 10.1016/j.landusepol.2017.02.010.
Pablo-Romero, M.del P., Sánchez-Braza, A., The changing of the relationships between carbon footprints and final demand: panel data evidence for 40 major countries. Energy Econ. 61 (2017), 8–20, 10.1016/j.eneco.2016.10.018.
Patricio, J., Angelis-Dimakis, A., Castillo-Castillo, A., Kalmykova, Y., Rosado, L., Region prioritization for the development of carbon capture and utilization technologies. J. CO₂ Util. 17 (2017), 50–59, 10.1016/j.jcou.2016.10.002.
Paudel, B., Zhang, Y., Li, S., Liu, L., Spatiotemporal changes in agricultural land cover in Nepal over the last 100 years. J. Geogr. Sci. 28:10 (2018), 1519–1537, 10.1007/s11442-018-1559-9.
Peters, G.P., Le Quéré, C., Andrew, R.M., Canadell, J.G., Friedlingstein, P., Ilyina, T., Tans, P., Towards real-time verification of CO2 emissions. Nat. Clim. Chang. 7:12 (2017), 848–850, 10.1038/s41558-017-0013-9.
Petrescu-Mag, R.M., Petrescu, D.C., Reti, K.O., My land is my food: exploring social function of large land deals using food security–land deals relation in five Eastern European countries. Land Use Policy 82 (2019), 729–741, 10.1016/j.landusepol.2019.01.003.
Pezzagno, M., Richiedei, A., Tira, M., Spatial planning policy for sustainability: analysis connecting land use and GHG emission in rural areas. Sustainability, 12(3), 2020, 947, 10.3390/su12030947.
Pigott, T.D., Polanin, J.R., Methodological guidance papers: high-quality meta-analysis in a systematic review. Rev. Educ. Res., 2019, 003465431987715, 10.3102/0034654319877153.
Pugh, T.A.M., Arneth, A., Olin, S., Ahlström, A., Bayer, A.D., Klein Goldewijk, K., Schurgers, G., Simulated carbon emissions from land-use change are substantially enhanced by accounting for agricultural management. Environ. Res. Lett., 10(12), 2015, 124008, 10.1088/1748-9326/10/12/124008.
Qi, Y., Dong, Y., Liu, J., Domroes, M., Geng, Y., Liu, L., Yang, X., Effect of the conversion of grassland to spring wheat field on the CO2 emission characteristics in Inner Mongolia, China. Soil Tillage Res. 94:2 (2007), 310–320, 10.1016/j.still.2006.08.008.
Reardon, T., Echeverria, R., Berdegué, J., Minten, B., Liverpool-Tasie, S., Tschirley, D., Zilberman, D., Rapid transformation of food systems in developing regions: highlighting the role of agricultural research & innovations. Agric. Syst. 172 (2019), 47–59, 10.1016/j.agsy.2018.01.022.
Rigg, J., Salamanca, A., Phongsiri, M., Sripun, M., More farmers, less farming? Understanding the truncated agrarian transition in Thailand. World Dev. 107 (2018), 327–337, 10.1016/j.worlddev.2018.03.008.
Romeu-Dalmau, C., Gasparatos, A., von Maltitz, G., Graham, A., Almagro-Garcia, J., Wilebore, B., Willis, K.J., Impacts of land use change due to biofuel crops on climate regulation services: five case studies in Malawi, Mozambique and Swaziland. Biomass Bioenergy 114 (2018), 30–40, 10.1016/j.biombioe.2016.05.011.
Rondhi, M., Pratiwi, P., Handini, V., Sunartomo, A., Budiman, S., Agricultural land conversion, land economic value, and sustainable agriculture: a case study in East Java, Indonesia. Land, 7(4), 2018, 148, 10.3390/land7040148.
Sarvaramini, A., Assima, G.P., Beaudoin, G., Larachi, F., Biomass torrefaction and CO2 capture using mining wastes – a new approach for reducing greenhouse gas emissions of co-firing plants. Fuel 115 (2014), 749–757, 10.1016/j.fuel.2013.07.087.
Shew, A.M., Durand-Morat, A., Putman, B., Nalley, L.L., Ghosh, A., Rice intensification in Bangladesh improves economic and environmental welfare. Environ. Sci. Pol. 95 (2019), 46–57, 10.1016/j.envsci.2019.02.004.
Shi, Y., Zang, S., Matsunaga, T., Yamaguchi, Y., A multi-year and high-resolution inventory of biomass burning emissions in tropical continents from 2001–2017 based on satellite observations. J. Clean. Prod., 270, 2020, 122511, 10.1016/j.jclepro.2020.122511.
Shiferaw, A., Yimer, F., Tuffa, S., Changes in soil organic carbon stock under different land use types in Semiarid Borana Rangelands: implications for CO2 emission mitigation in the Rangelands. J. Agric. Sci. Food Res., 10(1), 2019, 254, 10.35248/2593-9173.19.10.254.
Sitko, N.J., Jayne, T.S., Structural transformation or elite land capture? The growth of “emergent” farmers in Zambia. Food Policy 48 (2014), 194–202, 10.1016/j.foodpol.2014.05.006.
Skog, K.L., Steinnes, M., How do centrality, population growth and urban sprawl impact farmland conversion in Norway?. Land Use Policy 59 (2016), 185–196, 10.1016/j.landusepol.2016.08.035.
Smith, C.C., Espírito-Santo, F.D.B., Healey, J.R., Young, P.J., Lennox, G.D., Ferreira, J., Barlow, J., Secondary forests offset less than 10% of deforestation-mediated carbon emissions in the Brazilian Amazon. Glob. Chang. Biol., 2020, 10.1111/gcb.15352.
Smith, K.A., Conen, F., Impacts of land management on fluxes of trace greenhouse gases. Soil Use Manag. 20:2 (2006), 255–263, 10.1111/j.1475-2743.2004.tb00366.x.
Sudhakar Reddy, C., Vazeed Pasha, S., Satish, K.V., Saranya, K.R.L., Jha, C.S., Krishna Murthy, Y.V.N., Quantifying nationwide land cover and historical changes in forests of Nepal (1930–2014): implications on forest fragmentation. Biodivers. Conserv. 27:1 (2017), 91–107, 10.1007/s10531-017-1423-8.
Taghizadeh-Mehrjardi, R., Nabiollahi, K., Rasoli, L., Kerry, R., Scholten, T., Land suitability assessment and agricultural production sustainability using machine learning models. Agronomy, 10(4), 2020, 573, 10.3390/agronomy10040573.
Tang, S., Guo, J., Li, S., Li, J., Xie, S., Zhai, X., Wang, K., Synthesis of soil carbon losses in response to conversion of grassland to agriculture land. Soil Tillage Res. 185 (2019), 29–35, 10.1016/j.still.2018.08.011.
Turkeš, R., Sörensen, K., Hvattum, L.M., Meta-analysis of metaheuristics: quantifying the effect of adaptiveness in adaptive large neighborhood search. Eur. J. Oper. Res., 2020, 10.1016/j.ejor.2020.10.045.
Vadrevu, K.P., Lasko, K., Giglio, L., Justice, C., Analysis of Southeast Asian pollution episode during June 2013 using satellite remote sensing datasets. Environ. Pollut. 195 (2014), 245–256, 10.1016/j.envpol.2014.06.017.
Van Vuuren, D.P., Stehfest, E., Gernaat, D.E.H.J., Doelman, J.C., van den Berg, M., Harmsen, M., Tabeau, A., Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm. Glob. Environ. Chang. 42 (2017), 237–250, 10.1016/j.gloenvcha.2016.05.008.
Vesco, P., Dasgupta, S., De Cian, E., Carraro, C., Natural resources and conflict: a meta-analysis of the empirical literature. Ecol. Econ., 172, 2020, 106633, 10.1016/j.ecolecon.2020.106633.
Weiss, M., Jacob, F., Duveiller, G., Remote sensing for agricultural applications: a meta-review. Remote Sens. Environ., 236, 2020, 111402, 10.1016/j.rse.2019.111402.
Wenzel, S., Cox, P.M., Eyring, V., Friedlingstein, P., Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO2. Nature 538:7626 (2016), 499–501, 10.1038/nature19772.
WMO, Globally Averaged CO2 Levels Reach 400 Parts Per Million in 2015, 2016, 13.
Woodcock, P., Pullin, A.S., Kaiser, M.J., Evaluating and improving the reliability of evidence syntheses in conservation and environmental science: a methodology. Biol. Conserv. 176 (2014), 54–62, 10.1016/j.biocon.2014.04.020.
Wooldridge, J.M., Econometrics: panel data methods. Meyers, R., (eds.) Encyclopedia of Complexity and Systems Science, 2009, Springer, New York, NY, 10.1007/978-0-387-30440-3_167.
Yu, Z., Lu, C., Cao, P., Tian, H., Long-term terrestrial carbon dynamics in the Midwestern United States during 1850–2015: roles of land use and cover change and agricultural management. Glob. Chang. Biol. 24:6 (2018), 2673–2690, 10.1111/gcb.14074.
Zeraatpisheh, M., Bakhshandeh, E., Hosseini, M., Alavi, S.M., Assessing the effects of deforestation and intensive agriculture on the soil quality through digital soil mapping. Geoderma, 363, 2020, 114139, 10.1016/j.geoderma.2019.114139.
Zhang, Q., Wu, J., Lei, Y., Yang, F., Zhang, D., Zhang, K., Cheng, X., Agricultural land use change impacts soil CO2 emission and its 13 C-isotopic signature in central China. Soil Tillage Res. 177 (2018), 105–112, 10.1016/j.still.2017.11.017.
Zhang, W., Xu, H., Effects of land urbanization and land finance on carbon emissions: a panel data analysis for Chinese provinces. Land Use Policy 63 (2017), 493–500, 10.1016/j.landusepol.2017.02.006.
Zhao, R., Min, N., Geng, Y., He, Y., Allocation of carbon emissions among industries/sectors: an emission intensity reduction constrained approach. J. Clean. Prod. 142 (2017), 3083–3094, 10.1016/j.jclepro.2016.10.159.
Zhao, X., Deng, H., Wang, W., Han, F., Li, C., Zhang, H., Dai, Z., Impact of naturally leaking carbon dioxide on soil properties and ecosystems in the Qinghai-Tibet plateau. Sci. Rep., 7(1), 2017, 3001, 10.1038/s41598-017-02500-x.
Zhong, T., Qian, Z., Huang, X., Zhao, Y., Zhou, Y., Zhao, Z., Impact of the top-down quota-oriented farmland preservation planning on the change of urban land-use intensity in China. Habitat Int. 77 (2018), 71–79, 10.1016/j.habitatint.2017.12.013.
Zhu, E., Deng, J., Zhou, M., Gan, M., Jiang, R., Wang, K., Shahtahmassebi, A., Carbon emissions induced by land-use and land-cover change from 1970 to 2010 in Zhejiang, China. Sci. Total Environ. 646 (2019), 930–939, 10.1016/j.scitotenv.2018.07.317.
Zoundi, Z., CO2 emissions, renewable energy and the Environmental Kuznets Curve, a panel cointegration approach. Renew. Sust. Energ. Rev. 72 (2017), 1067–1075, 10.1016/j.rser.2016.10.018.
Zuo, L., Zhang, Z., Carlson, K.M., MacDonald, G.K., Brauman, K.A., Liu, Y., West, P.C., Progress towards sustainable intensification in China challenged by land-use change. Nat. Sustain. 1:6 (2018), 304–313, 10.1038/s41893-018-0076-2.