Arid and semi-arid regions; Climate change mitigation; Silvoarable; Spatial analysis; Vulnerability; Ecology; Nature and Landscape Conservation
Abstract :
[en] Agroforestry has been recognized as a sustainable strategy over conventional agriculture that can mitigate environmental impacts, enhance ecosystem services, maintain natural resources, and simultaneously improve smallholders’ livelihoods in rural areas. Agroforestry will be most effective in agricultural lands that are more vulnerable in terms of environmental and socioeconomic aspects. Therefore, it is necessary to identify the priority areas that are more susceptible to agroforestry. The objective of this study was to evaluate where and to what extent Iran's farmlands were subjected to increased environmental and socioeconomic pressures that can be alleviated through the implementation of agroforestry practices. To do so, two climatic, four soil, and four socioeconomic indicators were selected, and their maps were generated as well. Then, pressure maps of these indicators were created by applying the critical threshold of each indicator to the corresponding map. Finally, all the pressure maps were accumulated on a map called the Agroforestry Suitability Map (ASM). The locations that have more than five pressures on the current map were designated as priority areas for the development of agroforestry. The main findings showed that rise in temperature and soil organic carbon (SOC) deficit were the dominant pressures that affected the study area. Furthermore, about 17% of the total farmlands were recognized as the priority areas. The priority areas were mostly located in arid and semi-arid regions, which indicates the greater vulnerability of these regions to climatic and socioeconomic conditions. Our results highlighted that the farmlands of Kermanshah, Khuzestan, and Lorestan provinces, located adjacent to the Zagros Mountains, are the most suited areas for agroforestry implementation, respectively. The study findings could assist decision makers in mitigating the negative effects of environmental pressures and in providing a wide range of other beneficial services through the establishment of agroforestry systems in the recognized priority areas.
Disciplines :
Agriculture & agronomy
Author, co-author :
Kheiri, Mohammad; Department of Agroecology, Environmental Sciences Research Institute, Shahid Beheshti University, Tehran, Iran
Kambouzia, Jafar; Department of Agroecology, Environmental Sciences Research Institute, Shahid Beheshti University, Tehran, Iran
Sayahnia, Romina; Department of Agroecology, Environmental Sciences Research Institute, Shahid Beheshti University, Tehran, Iran
Soufizadeh, Saeid; Department of Agroecology, Environmental Sciences Research Institute, Shahid Beheshti University, Tehran, Iran
Mahdavi Damghani, Abdolmajid; Department of Agroecology, Environmental Sciences Research Institute, Shahid Beheshti University, Tehran, Iran
Azadi, Hossein ; Université de Liège - ULiège > TERRA Research Centre > Modélisation et développement ; Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic ; Faculty of Environmental Science and Engineering, Babeș-Bolyai University, Cluj-Napoca, Romania
Language :
English
Title :
Environmental and socioeconomic assessment of agroforestry implementation in Iran
Aguilera, E., Díaz-Gaona, C., García-Laureano, R., Reyes-Palomo, C., Guzmán, G.I., Ortolani, L., Sánchez-Rodríguez, M., Rodríguez-Estévez, V., Agroecology for adaptation to climate change and resource depletion in the Mediterranean region. A review. Agric Syst., 181, 2020, 102809, 10.1016/j.agsy.2020.102809.
Ahmad, F., Uddin, M.M., Goparaju, L., Agroforestry suitability mapping of India: geospatial approach based on FAO guidelines. Agrofor Syst. 93:4 (2019), 1319–1336, 10.1007/s10457-018-0233-7.
Amadu, F.O., Miller, D.C., McNamara, P.E., Agroforestry as a pathway to agricultural yield impacts in climate-smart agriculture investments: Evidence from southern Malawi. Ecol Econ, 167, 2020, 10.1016/j.ecolecon.2019.106443.
Apuri, I., Peprah, K., Achana, G.T.W., Climate change adaptation through agroforestry: the case of Kassena Nankana West District. Ghana. Environ Dev. 28 (2018), 32–41, 10.1016/j.envdev.2018.09.002.
Arenas-Corraliza, M.G., López-Díaz, M.L., Rolo, V., Cáceres, Y., Moreno, G., Phenological, morphological and physiological drivers of cereal grain yield in Mediterranean agroforestry systems. Agric Ecosyst Environ, 340, 2022, 10.1016/j.agee.2022.108158.
Artiola, J.F., Walworth, J.L., Musil, S.A., & Crimmins, M.A. (2019). Soil and land pollution. In Environmental and Pollution Science (pp. 219-235). Academic Press.
Azadi, H., Moghaddam, S.M., Burkart, S., Mahmoudi, H., Van Passel, S., Kurban, A., Lopez-Carr, D., Rethinking resilient agriculture: From climate-smart agriculture to vulnerable-smart agriculture. J Clean Prod., 2021, 128602, 10.1016/j.jclepro.2021.128602.
Bannayan, M., Rezaei, E.E., Future production of rainfed wheat in Iran (Khorasan province): climate change scenario analysis. Mitig Adapt Strateg Glob Chang 19:2 (2014), 211–227, 10.1007/s11027-012-9435-x.
Bhattacharjee, S., Kidwai, Z., Bhattarai, S., Bajpai, H., Reddy, G.V., Yessoufou, K., A case for reconsidering the conservation status of former Closed Areas in arid landscapes of western India. J for Nature Conserv 45 (2018), 30–40.
Branch, O., Wulfmeyer, V., Deliberate enhancement of rainfall using desert plantations. Proc. Natl Acad Sci 116:38 (2019), 18841–18847, 10.1073/pnas.1904754116.
Brown, S.E., Miller, D.C., Ordonez, P.J., Baylis, K., Evidence for the impacts of agroforestry on agricultural productivity, ecosystem services, and human well-being in high-income countries: a systematic map protocol. Environ Evid 7:1 (2018), 1–16, 10.1186/s13750-018-0136-0.
Chuma, G.B., Cirezi, N.C., Mondo, J.M., Mugumaarhahama, Y., Ganza, D.M., Katcho, K., Mushagalusa, G.N., Schmitz, S., Suitability for agroforestry implementation around Itombwe Natural Reserve (RNI), eastern DR Congo: Application of the Analytical Hierarchy Process (AHP) approach in geographic information system tool. Trees, Forests and People, 6, 2021, 10.1016/j.tfp.2021.100125.
Coulibaly, J.Y., Chiputwa, B., Nakelse, T., Kundhlande, G., Adoption of agroforestry and the impact on household food security among farmers in Malawi. Agric Syst 155 (2017), 52–69, 10.1016/j.agsy.2017.03.017.
Croitoru, A.E., Piticar, A., Imbroane, A.M., Burada, D.C., Spatiotemporal distribution of aridity indices based on temperature and precipitation in the extra-Carpathian regions of Romania. Theor Appl Climatol 112:3 (2013), 597–607, 10.1007/s00704-012-0755-2.
Cui, X., Climate change and adaptation in agriculture: Evidence from US cropping patterns. J Environ Econ Manage, 101, 2020, 10.1016/j.jeem.2020.102306.
Dagar, J.C., Gupta, S.R. and Teketay, D. eds., 2020. Agroforestry for Degraded Landscapes. Springer.
Daneshvar, M.R.M., Ebrahimi, M., Nejadsoleymani, H., An overview of climate change in Iran: facts and statistics. Environ Syst Res 8:1 (2019), 1–10, 10.1186/s40068-019-0135-3.
de Mendonça, G.C., Costa, R.C.A., Parras, R., de Oliveira, L.C.M., Abdo, M.T.V.N., Pacheco, F.A.L., Pissarra, T.C.T., Spatial indicator of priority areas for the implementation of agroforestry systems: An optimization strategy for agricultural landscapes restoration. Sci Total Environ, 839, 2022, 10.1016/j.scitotenv.2022.156185.
Ellison, D., Wang-Erlandsson, L., van der Ent, R., van Noordwijk, M., Upwind forests: managing moisture recycling for nature-based resilience. Unasylva 70:251 (2019), 14–26 http://resolver.tudelft.nl/uuid:04d72aca-b887-4850-b83d-9522dc358758.
Escribano, M., Díaz-Caro, C., Mesias, F.J., A participative approach to develop sustainability indicators for dehesa agroforestry farms. Sci Total Environ 640 (2018), 89–97, 10.1016/j.scitotenv.2018.05.297.
Fan, Y., Wang, C., Nan, Z., Determining water use efficiency of wheat and cotton: a meta-regression analysis. Agric Water Manage 199:8 (2018), 48–60, 10.1016/j.agwat.2017.12.006.
FAO. (1980). Metodologíáıa Provisional para la Evaluación de la Degradación de Suelos, vol. 1, FAO, Roma, Italia, 86 pp.
Farrokhzadeh, S., Hashemi Monfared, S.A., Azizyan, G., Sardar Shahraki, A., Ertsen, M.W., Abraham, E., Sustainable water resources management in an arid area using a coupled optimization-simulation modeling. Water, 12(3), 2020, 885, 10.3390/w12030885.
Fu, Y., Xiong, K., Zhang, Z., Ecosystem services and ecological compensation of world heritage: A literature review. J for Nature Conserv, 60, 2021.
Gloning, P., Estrella, N., Menzel, A., The impacts of climate change on the winter hardiness zones of woody plants in Europe. Theor Appl Climatol 113:3 (2013), 683–695, 10.1007/s00704-012-0817-5.
Gohari, A., Eslamian, S., Abedi-Koupaei, J., Bavani, A.M., Wang, D., Madani, K., Climate change impacts on crop production in Iran's Zayandeh-Rud River Basin. Sci Total Environ 442 (2013), 405–419, 10.1016/j.scitotenv.2012.10.029.
Gupta, S.R., Dagar, J.C., Teketay, D., Agroforestry for rehabilitation of degraded landscapes: Achieving livelihood and environmental security. Agroforestry for Degraded Landscapes, 2020, 23–68, 10.1007/978-981-15-4136-0_2.
Hart, K., Bartel, A., Menadue, H., Sedy, K., Fredih-Larsen, A., & Hjerp, P. (2012). Methodologies for Climate Proofing Investments and Measures under Cohesion and Regional Policy and the Common Agricultural Policy: Identifying the climate risks related to rural areas and adaptation options. A Report for DG Climate, 22.
Hunt, J.R., Hayman, P.T., Richards, R.A., Passioura, J.B., Opportunities to reduce heat damage in rainfed wheat crops based on plant breeding and agronomic management. Field Crops Res 224 (2018), 126–138, 10.1016/j.fcr.2018.05.012.
Ickowitz, A., Sills, E., de Sassi, C., Estimating smallholder opportunity costs of REDD+: A pantropical analysis from households to carbon and back. World Dev 95 (2017), 15–26, 10.1016/j.worlddev.2017.02.022.
IPCC, (2018). Summary for policymakers. In: Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., et al. (Eds.), Global Warming of 1.5°C. an IPCC Special Report on the Impacts of Global Warming of 1.5°C above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. World Meteorological Organization (WMO), Geneva, Switzerland.
Karimi, V., Karami, E., Keshavarz, M., Climate change and agriculture: Impacts and adaptive responses in Iran. J Integr Agric 17:1 (2018), 1–15, 10.1016/S2095-3119(17)61794-5.
Kay, S., Rega, C., Moreno, G., den Herder, M., Palma, J.H., Borek, R., Crous-Duran, J., Freese, D., Giannitsopoulos, M., Graves, A., Jäger, M., Agroforestry creates carbon sinks whilst enhancing the environment in agricultural landscapes in Europe. Land Use Policy 83 (2019), 581–593, 10.1016/j.landusepol.2019.02.025.
Kheiri, M., Deihimfard, R., Kambouzia, J., Movahhed Moghaddam, S., Rahimi Moghaddam, S., Azadi, H., Impact of Heat Stress on Rainfed Wheat Growth and Yield Under Semi-arid, Semi-humid and Mediterranean Climates in Iran Condition. Int J Plant Prod 16 (2022), 29–40, 10.1007/s42106-021-00179-9.
Kheiri, M., Kambouzia, J., Deihimfard, R., Movahhed Moghaddam, S., Anvari, S., Assessing the response of dryland barley yield to climate variability in semi-arid regions. Iran. J Arid Land 13 (2021), 905–917, 10.1007/s40333-021-0017-1.
Krishnamurthy, L., Krishnamurthy, P.K., Rajagopal, I., Solares, A.P., Can agroforestry systems thrive in the drylands? Characteristics of successful agroforestry systems in the arid and semi-arid regions of Latin America. Agroforest Syst 93 (2019), 503–513, 10.1007/s10457-017-0143-0.
Lefroy, E.C., Stirzaker, R.J., Agroforestry for water management in the cropping zone of southern Australia. Agrofor Syst 45:1 (1999), 277–302, 10.1023/A:1006241503888.
Lehmann, L.M., Smith, J., Westaway, S., Pisanelli, A., Russo, G., Borek, R., Sandor, M., Gliga, A., Smith, L., Ghaley, B.B., Productivity and economic evaluation of agroforestry systems for sustainable production of food and non-food products. Sustainability, 12(13), 2020, 5429, 10.3390/su12135429.
Liu, Z., Jia, G., Yu, X., Water uptake and WUE of Apple tree-Corn Agroforestry in the Loess hilly region of China. Agric Water Manag, 234, 2020, 10.1016/j.agwat.2020.106138.
Luo, L., Qiao, D., Zhang, R., Luo, C., Fu, X., Liu, Y., Research on the Influence of Education of Farmers’ Cooperatives on the Adoption of Green Prevention and Control Technologies by Members: Evidence from Rural China. Intl J Environ Res Public Health, 19(10), 2022, 6255, 10.3390/ijerph19106255.
MAJ. (2019). Distribution of cropping area and crop productivity in Iran. Ministry of Agriculture-Jahad. Available at: https://amar.maj.ir/.
Madani, K., AghaKouchak, A., Mirchi, A., Iran's socio-economic drought: challenges of a water-bankrupt nation. Iran Stud 49:6 (2016), 997–1016, 10.1080/00210862.2016.1259286.
Manes, S., Costello, M.J., Beckett, H., Debnath, A., Devenish-Nelson, E., Grey, K.A., Vale, M.M., Endemism increases species' climate change risk in areas of global biodiversity importance. Biol Conserv, 257, 2021.
Marone, D., Poirier, V., Coyea, M., Olivier, A., Munson, A.D., Carbon storage in agroforestry systems in the semi-arid zone of Niayes, Senegal. Agroforest Syst 91 (2017), 941–954, 10.1007/s10457-016-9969-0.
Merle, I., Villarreyna-Acuña, R., Ribeyre, F., Roupsard, O., Cilas, C., Avelino, J., Microclimate estimation under different coffee-based agroforestry systems using full-sun weather data and shade tree characteristics. Eur J Agron, 132, 2022, 10.1016/j.eja.2021.126396.
Mesgaran, M.B., Madani, K., Hashemi, H., Azadi, P., Iran's land suitability for agriculture. Sci Rep 7:1 (2017), 1–12, 10.1038/s41598-017-08066-y.
Mosquera-Losada, M.R., Santiago-Freijanes, J.J., Rois-Díaz, M., Moreno, G., Den Herder, M., Aldrey-Vázquez, J.A., Ferreiro-Domínguez, N., Pantera, A., Pisanelli, A., Rigueiro-Rodríguez, A., Agroforestry in Europe: A land management policy tool to combat climate change. Land Use Policy 78 (2018), 603–613, 10.1016/j.landusepol.2018.06.052.
Mouchet, M.A., Paracchini, M.L., Schulp, C.J.E., Stürck, J., Verkerk, P.J., Verburg, P.H., Lavorel, S., Bundles of ecosystem (dis) services and multifunctionality across European landscapes. Ecol Indic 73 (2017), 23–28, 10.1016/j.ecolind.2016.09.026.
Mukhlis, I., Rizaludin, M.S., Hidayah, I., Understanding Socio-Economic and Environmental Impacts of Agroforestry on Rural Communities. Forests, 13(4), 2022, 556, 10.3390/f13040556.
Neina, D., The role of soil pH in plant nutrition and soil remediation. Appl Environ Soil Sci, 2019, 10.1155/2019/5794869.
Oldfield, E.E., Bradford, M.A., Wood, S.A., Global meta-analysis of the relationship between soil organic matter and crop yields. Soil 5:1 (2019), 15–32, 10.5194/soil-5-15-2019.
Ouyang, L., Leus, L., Van Labeke, M.C., Three-year screening for cold hardiness of garden roses. Sci Hortic 245 (2019), 12–18, 10.1016/j.scienta.2018.10.003.
Panagos, P., Borrelli, P., Poesen, J., Ballabio, C., Lugato, E., Meusburger, K., Montanarella, L., Alewell, C., The new assessment of soil loss by water erosion in Europe. Environ Sci Policy 54 (2015), 438–447, 10.1016/j.envsci.2015.08.012.
Paudel, D., Tiwari, K.R., Raut, N., Bajracharya, R.M., Bhattarai, S., Sitaula, B.K., Thapa, S., What affects farmers in choosing better agroforestry practice as a strategy of climate change adaptation? An experience from the mid-hills of Nepal. Heliyon, 2022, 10.1016/j.heliyon.2022.e09695.
Qadir, M., Qureshi, A.S., Cheraghi, S.A.M., Extent and characterisation of salt-affected soils in Iran and strategies for their amelioration and management. Land Degrad Dev 19:2 (2008), 214–227, 10.1002/ldr.818.
Rathore, S.S., Babu, S., El-Sappah, A.H., Shekhawat, K., Singh, V.K., Singh, R.K., Upadhyay, P.K., Singh, R., Integrated agroforestry systems improve soil carbon storage, water productivity, and economic returns in the marginal land of the semi-arid region. Saudi J Biol Sci, 29(10), 2022, 10.1016/j.sjbs.2022.103427.
Rivest, D., Lorente, M., Olivier, A., Messier, C., Soil biochemical properties and microbial resilience in agroforestry systems: effects on wheat growth under controlled drought and flooding conditions. Sci Total Environ 463 (2013), 51–60, 10.1016/j.scitotenv.2013.05.071.
Rois-Díaz, M., Lovric, N., Lovric, M., Ferreiro-Domínguez, N., Mosquera-Losada, M.R., Den Herder, M., Graves, A., Palma, J.H.N., Paulo, J.A., Pisanelli, A., Smith, J., Farmers’ reasoning behind the uptake of agroforestry practices: evidence from multiple case-studies across Europe. Agrofor Syst 92:4 (2018), 811–828, 10.1007/s10457-017-0139-9.
Roozitalab, M.H., Siadat, H., Farshad, A., Introduction. Roozitalab, M., Siadat, H., Farshad, A., (eds.) The Soils of Iran. World Soils Book Series, 2018, Springer, Cham, 10.1007/978-3-319-69048-3_1.
Rosenstock, T.S., Dawson, I.K., Aynekulu, E., Chomba, S., Degrande, A., Fornace, K., Jamnadass, R., Kimaro, A., Kindt, R., Lamanna, C., Malesu, M., A Planetary Health Perspective on Agroforestry in Sub-Saharan Africa. One Earth 1:3 (2019), 330–344, 10.1016/j.oneear.2019.10.017.
Sabbaghi, M.A., Nazari, M., Araghinejad, S., Soufizadeh, S., Economic impacts of climate change on water resources and agriculture in Zayandehroud river basin in Iran. Agric Water Manag., 241, 2020, 10.1016/j.agwat.2020.106323.
Sadeghi, S.H.R., Soil erosion in Iran: state of the art, tendency and solutions. Agric For 63:3 (2017), 33–37, 10.17707/AgricultForest.63.3.04.
Sanou, L., Savadogo, P., Ezebilo, E.E., Thiombiano, A., Drivers of farmers’ decisions to adopt agroforestry: evidence from the Sudanian savanna zone. Burkina Faso. Renew Agric Food Syst 34:2 (2019), 116–133, 10.1017/S1742170517000369.
SCI. (2014). General agricultural census report of Statistics Center of Iran. Available at: https://www.amar.org.ir/Portals/0/keshavarzi93/results/agri93-99.pdf.
Segnon, A.C., Totin, E., Zougmoré, R.B., Lokossou, J.C., Thompson-Hall, M., Ofori, B.O., Achigan-Dako, E.G., Gordon, C., Differential household vulnerability to climatic and non-climatic stressors in semi-arid areas of Mali. West Africa. Clim Dev, 1–16, 2020, 10.1080/17565529.2020.1855097.
Shahbaz, M., Ashraf, M., Improving salinity tolerance in cereals. Crit Rev Plant Sci 32:4 (2013), 237–249, 10.1080/07352689.2013.758544.
Sida, T.S., Baudron, F., Kim, H., Giller, K.E., Climate-smart agroforestry: Faidherbia albida trees buffer wheat against climatic extremes in the Central Rift Valley of Ethiopia. Agric For Meteorol 248 (2018), 339–347, 10.1016/j.agrformet.2017.10.013.
Tabari, H., Talaee, P.H., Nadoushani, S.M., Willems, P., Marchetto, A., A survey of temperature and precipitation based aridity indices in Iran. Quat Int 345 (2014), 158–166, 10.1016/j.quaint.2014.03.061.
Telwala, Y., Unlocking the potential of agroforestry as a nature-based solution for localizing sustainable development goals: A case study from a drought-prone region in rural India. Nature-Based Solutions, 3, 2023, 10.1016/j.nbsj.2022.100045.
Thomas, A., Priault, P., Piutti, S., Dallé, E., Marron, N., Growth dynamics of fast-growing tree species in mixed forestry and agroforestry plantations. Forest Ecol and Manage, 480, 2021.
Thomson, A.M., Ellis, E.C., Grau, H.R., Kuemmerle, T., Meyfroidt, P., Ramankutty, N., Zeleke, G., Sustainable intensification in land systems: trade-offs, scales, and contexts. Curr Opin Environ Sustain 38 (2019), 37–43, 10.1016/j.cosust.2019.04.011.
Wang, Y., Lan, T., Deng, S., Zang, Z., Zhao, Z., Xie, Z., Shen, G., Forest-cover change rather than climate change determined giant panda's population persistence. Biol Conserv, 265, 2022.
Widrlechner, M.P., Daly, C., Keller, M., Kaplan, K., Horticultural applications of a newly revised USDA Plant Hardiness Zone Map. Hort Technology 22:1 (2012), 6–19 https://lib.dr.iastate.edu/ncrpis_pubs/5.
Wingeyer, A.B., Amado, T.J., Pérez-Bidegain, M., Studdert, G.A., Varela, C.H.P., Garcia, F.O., Karlen, D.L., Soil quality impacts of current South American agricultural practices. Sustainability 7:2 (2015), 2213–2242, 10.3390/su7022213.
Zhang, D., Du, G., Sun, Z., Bai, W., Wang, Q., Feng, L., Zheng, J., Zhang, Z., Liu, Y., Yang, S., Yang, N., Agroforestry enables high efficiency of light capture, photosynthesis and dry matter production in a semi-arid climate. Eur J Agron 94 (2018), 1–11, 10.1016/j.eja.2018.01.001.
Zhang, D.D., Zhao, S.Y., Wu, Q.L., Li, Y.Y., Wu, K.M., Cold hardiness of the invasive fall armyworm, Spodoptera frugiperda in China. J Integr Agric 20:3 (2021), 764–771, 10.1016/S2095-3119(20)63288-9.
Zhao, L., Gao, X., He, N., Zhao, X., Ecohydrological advantage of young apple tree-based agroforestry and its response to extreme droughts on the semiarid Loess Plateau. Agric For Meteorol, 321, 2022, 10.1016/j.agrformet.2022.108969.