Fays, Maxime ; Université de Liège - ULiège > Unités de recherche interfacultaires > Space sciences, Technologies and Astrophysics Research (STAR) ; LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, United States
Collette, Christophe ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Active aerospace structures and advanced mechanical systems
Boudart, Vincent ; Université de Liège - ULiège > Unités de recherche interfacultaires > Space sciences, Technologies and Astrophysics Research (STAR)
Cudell, Jean-René ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Interactions fondamentales en physique et astrophysique (IFPA)
K. M. Rajwade, D. R. Lorimer, and L. D. Anderson, Detecting pulsars in the Galactic Centre, Mon. Not. R. Astron. Soc. 471, 730 (2017). MNRAA4 0035-8711 10.1093/mnras/stx1661
C. Kim and M. B. Davies, Neutron stars in the Galactic Center, J. Korean Astron. Soc. 52, 165 (2018). CHACDE 0253-3065 10.21562/kjs.2018.08.52.3.165
M. Ajello, Fermi-LAT observations of high-energy (Equation presented)-ray emission toward the Galactic Center, Astrophys. J. 819, 44 (2016). ASJOAB 0004-637X 10.3847/0004-637X/819/1/44
M. Di Mauro, Characteristics of the Galactic Center excess measured with 11 years of Fermi-LAT data, Phys. Rev. D 103, 063029 (2021). PRVDAQ 2470-0010 10.1103/PhysRevD.103.063029
H. E. S. S. Collaboration, Acceleration of petaelectronvolt protons in the Galactic Centre, Nature (London) 531, 476 (2016). NATUAS 0028-0836 10.1038/nature17147
A. Cuoco, M. Krämer, and M. Korsmeier, Novel Dark Matter Constraints from Antiprotons in Light of AMS-02, Phys. Rev. Lett. 118, 191102 (2017). PRLTAO 0031-9007 10.1103/PhysRevLett.118.191102
M.-Y. Cui, Q. Yuan, Y.-L. S. Tsai, and Y.-Z. Fan, Possible Dark Matter Annihilation Signal in the AMS-02 Antiproton Data, Phys. Rev. Lett. 118, 191101 (2017). PRLTAO 0031-9007 10.1103/PhysRevLett.118.191101
A. Albert, Searching for dark matter annihilation in recently discovered Milky Way satellites with Fermi-LAT, Astrophys. J. 834, 110 (2017). ASJOAB 0004-637X 10.3847/1538-4357/834/2/110
M. Ackermann, The Fermi Galactic Center GeV excess and implications for dark matter, Astrophys. J. 840, 43 (2017). ASJOAB 0004-637X 10.3847/1538-4357/aa6cab
M. Di Mauro and M. W. Winkler, Multimessenger constraints on the dark matter interpretation of the Fermi-LAT Galactic Center excess, Phys. Rev. D 103, 123005 (2021). PRVDAQ 2470-0010 10.1103/PhysRevD.103.123005
R. Bartels, S. Krishnamurthy, and C. Weniger, Strong Support for the Millisecond Pulsar Origin of the Galactic Center GeV Excess, Phys. Rev. Lett. 116, 051102 (2016). PRLTAO 0031-9007 10.1103/PhysRevLett.116.051102
S. K. Lee, M. Lisanti, B. R. Safdi, T. R. Slatyer, and W. Xue, Evidence for Unresolved (Equation presented)-Ray Point Sources in the Inner Galaxy, Phys. Rev. Lett. 116, 051103 (2016). PRLTAO 0031-9007 10.1103/PhysRevLett.116.051103
F. Calore, M. Di Mauro, F. Donato, J. W. T. Hessels, and C. Weniger, Radio detection prospects for a bulge population of millisecond pulsars as suggested by FERMI-LAT observations of the inner galaxy, Astrophys. J. 827, 143 (2016). ASJOAB 0004-637X 10.3847/0004-637X/827/2/143
T. Grégoire and J. Knödlseder, Constraining the Galactic millisecond pulsar population using Fermi Large Area Telescope, Astron. Astrophys. 554, A62 (2013). AAEJAF 0004-6361 10.1051/0004-6361/201219676
Fermi-LAT Collaboration, Characterizing the population of pulsars in the inner Galaxy with the Fermi Large Area Telescope, arXiv:1705.00009.
D. Hooper and T. Linden, Millisecond pulsars, TeV halos, and implications for the Galactic Center gamma-ray excess, Phys. Rev. D 98, 043005 (2018). PRVDAQ 2470-0010 10.1103/PhysRevD.98.043005
M. Buschmann, N. L. Rodd, B. R. Safdi, L. J. Chang, S. Mishra-Sharma, M. Lisanti, and O. Macias, Foreground mismodeling and the point source explanation of the Fermi Galactic Center excess, Phys. Rev. D 102, 023023 (2020). PRVDAQ 2470-0010 10.1103/PhysRevD.102.023023
T. Lacroix, J. Silk, E. Moulin, and C. Bœhm, Connecting the new H. E. S. S. diffuse emission at the Galactic Center with the Fermi GeV excess: A combination of millisecond pulsars and heavy dark matter?, Phys. Rev. D 94, 123008 (2016). PRVDAQ 2470-0010 10.1103/PhysRevD.94.123008
O. J. Piccinni, Status and perspectives of continuous gravitational wave searches, Galaxies 10, 72 (2022). 2075-4434 10.3390/galaxies10030072
K. Riles, Searches for continuous-wave gravitational radiation, arXiv:2206.06447.
K. Riles, Recent searches for continuous gravitational waves, Mod. Phys. Lett. A 32, 1730035 (2017). MPLAEQ 0217-7323 10.1142/S021773231730035X
M. Sieniawska and M. Bejger, Continuous gravitational waves from neutron stars: Current status and prospects, Universe 5, 217 (2019). 2218-1997 10.3390/universe5110217
R. Abbott, Gravitational-wave constraints on the equatorial ellipticity of millisecond pulsars, Astrophys. J. Lett. 902, L21 (2020). AJLEEY 2041-8213 10.3847/2041-8213/abb655
R. Abbott, All-sky search in early O3 LIGO data for continuous gravitational-wave signals from unknown neutron stars in binary systems, Phys. Rev. D 103, 064017 (2021). PRVDAQ 2470-0010 10.1103/PhysRevD.103.064017
R. Abbott, Diving below the spin-down limit: Constraints on gravitational waves from the energetic young pulsar PSR J0537-6910, Astrophys. J. Lett. 913, L27 (2021). AJLEEY 2041-8213 10.3847/2041-8213/abffcd
R. Abbott, Constraints from LIGO O3 data on gravitational-wave emission due to r-modes in the glitching pulsar PSR J0537-6910, Astrophys. J. 922, 71 (2021). ASJOAB 0004-637X 10.3847/1538-4357/ac0d52
R. Abbott, Searches for continuous gravitational waves from young supernova remnants in the early third observing run of advanced LIGO and Virgo, Astrophys. J. 921, 80 (2021). ASJOAB 0004-637X 10.3847/1538-4357/ac17ea
R. Abbott, All-sky search for continuous gravitational waves from isolated neutron stars in the early O3 LIGO data, Phys. Rev. D 104, 082004 (2021). PRVDAQ 2470-0010 10.1103/PhysRevD.104.082004
R. Abbott (LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration), Search for continuous gravitational waves from 20 accreting millisecond X-ray pulsars in O3 LIGO data, Phys. Rev. D 105, 022002 (2022). PRVDAQ 2470-0010 10.1103/PhysRevD.105.022002
R. Tenorio, D. Keitel, and A. M. Sintes, Search methods for continuous gravitational-wave signals from unknown sources in the advanced-detector era, Universe 7, 474 (2021). 2218-1997 10.3390/universe7120474
F. Acernese, Advanced Virgo: A second-generation interferometric gravitational wave detector, Classical Quantum Gravity 32, 024001 (2015). CQGRDG 0264-9381 10.1088/0264-9381/32/2/024001
O. J. Piccinni, P. Astone, S. D'Antonio, S. Frasca, G. Intini, P. Leaci, S. Mastrogiovanni, A. Miller, C. Palomba, and A. Singhal, A new data analysis framework for the search of continuous gravitational wave signals, Classical Quantum Gravity 36, 015008 (2019). CQGRDG 0264-9381 10.1088/1361-6382/aaefb5
O. J. Piccinni, P. Astone, S. D'Antonio, S. Frasca, G. Intini, I. La Rosa, P. Leaci, S. Mastrogiovanni, A. Miller, and C. Palomba, Directed search for continuous gravitational-wave signals from the galactic center in the advanced LIGO second observing run, Phys. Rev. D 101, 082004 (2020). PRVDAQ 2470-0010 10.1103/PhysRevD.101.082004
R. Abbott, Search for anisotropic gravitational-wave backgrounds using data from advanced LIGO's and advanced Virgo's first three observing runs, Phys. Rev. D 104, 022005 (2021). PRVDAQ 2470-0010 10.1103/PhysRevD.104.022005
K. Glampedakis and L. Gualtieri, Gravitational waves from single neutron stars: An advanced detector era survey, Astrophysics and Space Science Library 457, 673 (2018). ASSLAD 0067-0057 10.1007/978-3-319-97616-7
N. K. Johnson-McDaniel and B. J. Owen, Maximum elastic deformations of relativistic stars, Phys. Rev. D 88, 044004 (2013). PRVDAQ 1550-7998 10.1103/PhysRevD.88.044004
J. M. Lattimer, The physics of neutron stars, Science 304, 536 (2004). SCIEAS 0036-8075 10.1126/science.1090720
N. Andersson, A new class of unstable modes of rotating relativistic stars, Astrophys. J. 502, 708 (1998). ASJOAB 0004-637X 10.1086/305919
L. Bildsten, Gravitational radiation and rotation of accreting neutron stars, Astrophys. J. 501, L89 (1998). ASJOAB 0004-637X 10.1086/311440
J. L. Friedman and S. M. Morsink, Axial instability of rotating relativistic stars, Astrophys. J. 502, 714 (1998). ASJOAB 0004-637X 10.1086/305920
A. Arvanitaki, M. Baryakhtar, and X. Huang, Discovering the QCD axion with black holes and gravitational waves, Phys. Rev. D 91, 084011 (2015). PRVDAQ 1550-7998 10.1103/PhysRevD.91.084011
M. Baryakhtar, M. Galanis, R. Lasenby, and O. Simon, Black hole superradiance of self-interacting scalar fields, Phys. Rev. D 103, 095019 (2021). PRVDAQ 2470-0010 10.1103/PhysRevD.103.095019
R. Brito, V. Cardoso, and P. Pani, Superradiance, Lect. Notes Phys. 971, 1 (2020). LNPHA4 0075-8450 10.1007/978-3-030-46622-0
R. Brito, S. Ghosh, E. Barausse, E. Berti, V. Cardoso, I. Dvorkin, A. Klein, and P. Pani, Gravitational wave searches for ultralight bosons with LIGO and LISA, Phys. Rev. D 96, 064050 (2017). PRVDAQ 2470-0010 10.1103/PhysRevD.96.064050
H. Yoshino and H. Kodama, The bosenova and axiverse, Classical Quantum Gravity 32, 214001 (2015). CQGRDG 0264-9381 10.1088/0264-9381/32/21/214001
W. E. East and F. Pretorius, Superradiant Instability and Backreaction of Massive Vector Fields around Kerr Black Holes, Phys. Rev. Lett. 119, 041101 (2017). PRLTAO 0031-9007 10.1103/PhysRevLett.119.041101
R. Brito and P. Pani, Black-hole superradiance: Searching for ultralight bosons with gravitational waves, in Handbook of Gravitational Wave Astronomy, edited by C. Bambi, S. Katsanevas, and K. D. Kokkotas (Springer Singapore, Singapore, 2020), pp. 1-33.
C. A. R. Herdeiro and E. Radu, Dynamical Formation of Kerr Black Holes with Synchronized Hair: An Analytic Model, Phys. Rev. Lett. 119, 261101 (2017). PRLTAO 0031-9007 10.1103/PhysRevLett.119.261101
N. Siemonsen and W. E. East, Gravitational wave signatures of ultralight vector bosons from black hole superradiance, Phys. Rev. D 101, 024019 (2020). PRVDAQ 2470-0010 10.1103/PhysRevD.101.024019
L. Sun, Characterization of systematic error in Advanced LIGO calibration, Classical Quantum Gravity 37, 225008 (2020). CQGRDG 0264-9381 10.1088/1361-6382/abb14e
L. Sun, Characterization of systematic error in Advanced LIGO calibration in the second half of O3, arXiv:2107.00129.
F. Acernese (Virgo Collaboration), Calibration of Advanced Virgo and reconstruction of detector strain h(t) during the observing run O3, Classical Quantum Gravity 39, 045006 (2022). CQGRDG 0264-9381 10.1088/1361-6382/ac3c8e
J. Zweizig and K. Riles, Information on self-gating of h(t) used in O3 continuous-wave and stochastic searches, Techncal Report No. LIGO-T2000384, LIGO Laboratory, 2021.
P. Astone, S. Frasca, and C. Palomba, The short FFT database and the peak map for the hierarchical search of periodic sources, Classical Quantum Gravity 22, S1197 (2005). CQGRDG 0264-9381 10.1088/0264-9381/22/18/S34
E. Goetz, O3a lines and combs found in self-gated C01 data, Technical Report No. LIGO-T2100200, LIGO Laboratory, 2021.
O. J. Piccinni, K. Janssens, I. Fiori, C. Palomba, K. Turbang, L. Pierini, M. C. Tringali, N. Arnaud, and A. Trovato, Virgo O3 list of lines, Technical Report No. LIGO-T2100141-v2 LIGO Laboratory, 2021.
P. Astone, A. Colla, S. D'Antonio, S. Frasca, and C. Palomba, Method for all-sky searches of continuous gravitational wave signals using the frequency-hough transform, Phys. Rev. D 90, 042002 (2014). PRVDAQ 1550-7998 10.1103/PhysRevD.90.042002
A. Singh, M. A. Papa, and V. Dergachev, Characterizing the sensitivity of isolated continuous gravitational wave searches to binary orbits, Phys. Rev. D 100, 024058 (2019). PRVDAQ 2470-0010 10.1103/PhysRevD.100.024058
M. J. Reid and A. Brunthaler, The proper motion of sagittarius A∗. III. The case for a supermassive black hole, Astrophys. J. 892, 39 (2020). ASJOAB 0004-637X 10.3847/1538-4357/ab76cd
F. Antonucci, P. Astone, S. D'Antonio, S. Frasca, and C. Palomba, Detection of periodic gravitational wave sources by Hough transform in the (Equation presented) versus (Equation presented) plane, Classical Quantum Gravity 25, 184015 (2008). CQGRDG 0264-9381 10.1088/0264-9381/25/18/184015
D. Davis, LIGO detector characterization in the second and third observing runs, Classical Quantum Gravity 38, 135014 (2021). CQGRDG 0264-9381 10.1088/1361-6382/abfd85
P. B. Covas, Identification and mitigation of narrow spectral artifacts that degrade searches for persistent gravitational waves in the first two observing runs of advanced LIGO, Phys. Rev. D 97, 082002 (2018). PRVDAQ 2470-0010 10.1103/PhysRevD.97.082002
R. Abbott, All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO and Advanced Virgo O3 data, arXiv:2201.00697.
P. Astone, S. D'Antonio, S. Frasca, and C. Palomba, A method for detection of known sources of continuous gravitational wave signals in non-stationary data, Classical Quantum Gravity 27, 194016 (2010). CQGRDG 0264-9381 10.1088/0264-9381/27/19/194016
P. Astone, A. Colla, S. D'Antonio, S. Frasca, C. Palomba, and R. Serafinelli, Method for narrow-band search of continuous gravitational wave signals, Phys. Rev. D 89, 062008 (2014). PRVDAQ 1550-7998 10.1103/PhysRevD.89.062008
E. Goetz, Unidentified O3 lines found in self-gated C01 data, Technical Report No. LIGO-T2100201, LIGO Laboratory, 2021.
R. Tenorio, D. Keitel, and A. M. Sintes, Application of a hierarchical MCMC follow-up to Advanced LIGO continuous gravitational-wave candidates, Phys. Rev. D 104, 084012 (2021). PRVDAQ 2470-0010 10.1103/PhysRevD.104.084012
G. Ashton and R. Prix, Hierarchical multistage MCMC follow-up of continuous gravitational wave candidates, Phys. Rev. D 97, 103020 (2018). PRVDAQ 2470-0010 10.1103/PhysRevD.97.103020
D. Keitel, R. Tenorio, G. Ashton, and R. Prix, p y f stat: A Python package for continuous gravitational-wave data analysis, J. Open Source Softwaare 6, 3000 (2021). 2475-9066 10.21105/joss.03000
R. Abbott, All-sky search for gravitational wave emission from scalar boson clouds around spinning black holes in LIGO O3 data, Phys. Rev. D 105, 102001 (2022). PRVDAQ 2470-0010 10.1103/PhysRevD.105.102001
See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevD.106.042003 for numerical values of upper limits.
B. J. Owen, How to adapt broad-band gravitational-wave searches for r-modes, Phys. Rev. D 82, 104002 (2010). PRVDAQ 1550-7998 10.1103/PhysRevD.82.104002
F. Gittins, N. Andersson, and D. I. Jones, Modelling neutron star mountains, Mon. Not. R. Astron. Soc. 500, 5570 (2020). MNRAA4 0035-8711 10.1093/mnras/staa3635
R. Abuter (The GRAVITY Collaboration), A geometric distance measurement to the galactic center black hole with 0.3% uncertainty, Astron. Astrophys. 625, L10 (2019). AAEJAF 0004-6361 10.1051/0004-6361/201935656
A. Eckart, A. Hüttemann, C. Kiefer, S. Britzen, M. Zajaček, C. Lämmerzahl, M. Stöckler, M. Valencia-S, V. Karas, and M. García-Marín, The Milky Way's supermassive black hole: How good a case is it?, Found. Phys. 47, 553 (2017). FNDPA4 0015-9018 10.1007/s10701-017-0079-2
C. Francis and E. Anderson, Two estimates of the distance to the Galactic Centre, Mon. Not. R. Astron. Soc. 441, 1105 (2014). MNRAA4 0035-8711 10.1093/mnras/stu631
T. Hirota, The first VERA astrometry catalog, Publ. Astron. Soc. Jpn. 72, 50 (2020). PASJAC 0004-6264 10.1093/pasj/psaa018
B. J. Owen, Maximum Elastic Deformations of Compact Stars with Exotic Equations of State, Phys. Rev. Lett. 95, 211101 (2005). PRLTAO 0031-9007 10.1103/PhysRevLett.95.211101
D. I. Jones, Gravitational wave emission from rotating superfluid neutron stars, Mon. Not. R. Astron. Soc. 402, 2503 (2010). MNRAA4 0035-8711 10.1111/j.1365-2966.2009.16059.x
D. I. Jones, Parameter choices and ranges for continuous gravitational wave searches for steadily spinning neutron stars, Mon. Not. R. Astron. Soc. 453, 53 (2015). MNRAA4 0035-8711 10.1093/mnras/stv1584
D. I. Jones and N. Andersson, Freely precessing neutron stars: Model and observations, Mon. Not. R. Astron. Soc. 324, 811 (2001). MNRAA4 0035-8711 10.1046/j.1365-8711.2001.04251.x
N. Andersson, D. I. Jones, and W. C. G. Ho, Implications of an r-mode in XTE J1751-305: Mass, radius and spin evolution, Mon. Not. R. Astron. Soc. 442, 1786 (2014). MNRAA4 0035-8711 10.1093/mnras/stu870
A. Idrisy, B. J. Owen, and D. I. Jones, R-mode frequencies of slowly rotating relativistic neutron stars with realistic equations of state, Phys. Rev. D 91, 024001 (2015). PRVDAQ 1550-7998 10.1103/PhysRevD.91.024001
M. Freitag, P. Amaro-Seoane, and V. Kalogera, Stellar remnants in galactic nuclei: Mass segregation, Astrophys. J. 649, 91 (2006). ASJOAB 0004-637X 10.1086/506193
C. J. Hailey, K. Mori, F. E. Bauer, M. E. Berkowitz, J. Hong, and B. J. Hord, A density cusp of quiescent X-ray binaries in the central parsec of the Galaxy, Nature (London) 556, 70 (2018). NATUAS 0028-0836 10.1038/nature25029
K. Mori, C. J. Hailey, T. Y. E. Schutt, S. Mandel, K. Heuer, J. E. Grindlay, J. Hong, G. Ponti, and J. A. Tomsick, The x-ray binary population in the Galactic Center revealed through multi-decade observations, Astrophys. J. 921, 148 (2021). ASJOAB 0004-637X 10.3847/1538-4357/ac1da5
C. Palomba, Direct Constraints on the Ultralight Boson Mass from Searches of Continuous Gravitational Waves, Phys. Rev. Lett. 123, 171101 (2019). PRLTAO 0031-9007 10.1103/PhysRevLett.123.171101
R. Emami and A. Loeb, Observational signatures of the black hole mass distribution in the Galactic Center, J. Cosmol. Astropart. Phys. 02 (2020) 021. JCAPBP 1475-7516 10.1088/1475-7516/2020/02/021
A. Generozov, N. C. Stone, B. D. Metzger, and J. P. Ostriker, An overabundance of black hole X-ray binaries in the Galactic Centre from tidal captures, Mon. Not. R. Astron. Soc. 478, 4030 (2018). MNRAA4 0035-8711 10.1093/mnras/sty1262
G. Ushomirsky, C. Cutler, and L. Bildsten, Deformations of accreting neutron star crusts and gravitational wave emission, Mon. Not. R. Astron. Soc. 319, 902 (2002). MNRAA4 0035-8711 10.1046/j.1365-8711.2000.03938.x
B. Haskell, D. I. Jones, and N. Andersson, Mountains on neutron stars: Accreted versus non-accreted crusts, Mon. Not. R. Astron. Soc. 373, 1423 (2006). MNRAA4 0035-8711 10.1111/j.1365-2966.2006.10998.x
R. Bondarescu, S. A. Teukolsky, and I. Wasserman, Spinning down newborn neutron stars: Nonlinear development of the r-mode instability, Phys. Rev. D 79, 104003 (2009). PRVDAQ 1550-7998 10.1103/PhysRevD.79.104003
P. Jaranowski, A. Królak, and B. F. Schutz, Data analysis of gravitational-wave signals from spinning neutron stars: The signal and its detection, Phys. Rev. D 58, 063001 (1998). PRVDAQ 0556-2821 10.1103/PhysRevD.58.063001
P. Astone, K. M. Borkowski, P. Jaranowski, and A. Królak, Data analysis of gravitational-wave signals from spinning neutron stars. IV. An all-sky search, Phys. Rev. D 65, 042003 (2002). PRVDAQ 0556-2821 10.1103/PhysRevD.65.042003