Dissipation coefficients; Dissipation mechanism; Electromagnetics; Hypernuclei; Neutron stars; Nuclear matters; State of the art; Transport theory; Physics and Astronomy (all); Nuclear Theory; General Physics and Astronomy
Abstract :
[en] Experimental studies of nuclear fission induced by fusion, transfer, spallation, fragmentation, and electromagnetic reactions in combination with state-of-the-art calculations are successful to investigate the nuclear dissipation mechanism in normal nuclear matter, containing only nucleons. The dissipation mechanism has been widely studied by the use of many different fission observables and nowadays the dissipation coefficients involved in transport theories are well constrained. However, the existence of hypernuclei and the possible presence of hyperons in neutron stars make it necessary to extend the investigation of the nuclear dissipation coefficient to the strangeness sector. In this Letter, we use fission reactions of hypernuclei to constrain for the first time the dissipation coefficient in hypernuclear matter, observing that this coefficient increases a factor of 6 in the presence of a single Λ hyperon with respect to normal nuclear matter.
Disciplines :
Physics
Author, co-author :
Rodríguez-Sánchez, J L ; CITENI, Campus Industrial de Ferrol, Universidade da Coruńa, E-15403 Ferrol, Spain ; IGFAE, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
Cugnon, Joseph ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Interactions fondamentales en physique et astrophysique (IFPA)
David, J-C ; IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
Hirtz, J ; IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France ; Physics Institute, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
Kelić-Heil, A ; GSI-Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt, Germany
Vidaña, I; INFN, Sezione di Catania, Dipartimento di Fisica "Ettore Majorana," Università di Catania, I-95123 Catania, Italy
Language :
English
Title :
Constraint of the Nuclear Dissipation Coefficient in Fission of Hypernuclei.
We thank Dr. Alain Boudard, Dr. Davide Mancusi, and Dr. Sylvie Leray for enlightening discussions and Dr. Georg Schnabel for his technical support. This work was partially supported by the P2IO LabEx (ANR-10-LABX-0038) in the framework “Investissements d’Avenir” (ANR-11-IDEX-0003-01), managed by the Agence Nationale de la Recherche (ANR) (France), and by the EU ENSAR2 FP7 project (Grant Agreement No. 654002). I. V. thanks the support of the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No. 824093. J. L. R.-S. is thankful for the support by the Department of Education, Culture and University Organization of the Regional Government of Galicia under the Postdoctoral Fellowship Grant No. ED481D-2021-018 and by the “Ramón y Cajal” programme under the Grant No. RYC2021-031989-I, funded by MCIN/AEI/10.13039/501100011033 and by “European Union NextGenerationEU/PRTR.”
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
L. Meitner and O. R. Frisch, Nature (London) 143, 239 (1939). NATUAS 0028-0836 10.1038/143239a0
O. Hahn and F. Strassmann, Naturwissenschaften 27, 11 (1939). NATWAY 0028-1042 10.1007/BF01488241
P. Möller, D. Madland, A. Sierk, and A. Iwamoto, Nature (London) 409, 785 (2001). NATUAS 0028-0836 10.1038/35057204
T. Wada, N. Carjan, and Y. Abe, Nucl. Phys. A538, 283 (1992). NUPBBO 0550-3213 10.1016/0375-9474(92)90778-I
A. J. Sierk, Phys. Rev. C 96, 034603 (2017). PRVCAN 2469-9985 10.1103/PhysRevC.96.034603
H. Risken, The Fokker-Planck Equation (Springer, Berlin, 1989).
P. Grangé and H. Weidenmüller, Phys. Lett. 96B, 26 1980. PYLBAJ 0370-2693 10.1016/0370-2693(80)90204-X
J. Randrup and P. Möller, Phys. Rev. Lett. 106, 132503 (2011). PRLTAO 0031-9007 10.1103/PhysRevLett.106.132503
P. Fröbrich and I. I. Gontchar, Phys. Rep. 292, 131 (1988). PRPLCM 0370-1573 10.1016/S0370-1573(97)00042-2
P. N. Nadtochy, A. Kelić, and K.-H. Schmidt, Phys. Rev. C 75, 064614 (2007). PRVCAN 0556-2813 10.1103/PhysRevC.75.064614
J. Randrup and P. Möller, Phys. Rev. C 88, 064606 (2013). PRVCAN 0556-2813 10.1103/PhysRevC.88.064606
A. Gal, E. V. Hugenford, and D. J. Millener, Rev. Mod. Phys. 8, 035004 (2016). RMPHAT 0034-6861 10.1103/RevModPhys.88.035004
H. Park, H. Bhang, M. Youn, O. Hashimoto, K. Maeda, Phys. Rev. C 61, 054004 (2000). PRVCAN 0556-2813 10.1103/PhysRevC.61.054004
D. J. Millener, C. B. Dover, and A. Gal, Phys. Rev. C 38, 2700 (1988). PRVCAN 0556-2813 10.1103/PhysRevC.38.2700
P. M. M. Maessen, Th. A. Rijken, and J. J. de Swart, Phys. Rev. C 40, 2226 (1989). PRVCAN 0556-2813 10.1103/PhysRevC.40.2226
K. Tominaga, T. Ueda, M. Yamaguchi, N. Kijima, D. Okamoto, K. Miyagawa, and T. Yamada, Nucl. Phys. A642, 483 (1998). NUPBBO 0550-3213 10.1016/S0375-9474(98)00485-0
H. Polinder, J. Haidenbauer, and U.-G. Meißner, Nucl. Phys. A779, 244 (2006). NUPBBO 0550-3213 10.1016/j.nuclphysa.2006.09.006
J. Haidenbauer, S. Petschauer, N. Kaiser, and U.-G. Meißner, A. Nogga, and W. Weise, Nucl. Phys. A915, 24 (2013). NUPBBO 0550-3213 10.1016/j.nuclphysa.2013.06.008
E. Hiyama and K. Nakazawa, Annu. Rev. Nucl. Part. Sci. 68, 131 (2018). ARPSDF 0163-8998 10.1146/annurev-nucl-101917-021108
J. Haidenbauer, U.-G. Meißner, and A. Nogga, Eur. Phys. J. A 56, 91 (2020). EPJAFV 1434-6001 10.1140/epja/s10050-020-00100-4
H. Lenske, M. Dhar, T. Gaitanos, and X. Cao, Prog. Part. Nucl. Phys. 98, 119 (2018). PPNPDB 0146-6410 10.1016/j.ppnp.2017.09.001
N. Andersson, Astrophys. J. 502, 708 (1998). ASJOAB 0004-637X 10.1086/305919
J. L. Friedman and S. M. Morsink, Astrophys. J. 502, 714 (1998). ASJOAB 0004-637X 10.1086/305920
E. E. Kolomeitsev and D. N. Voskresensky, Phys. Rev. C 91, 025805 (2015). PRVCAN 0556-2813 10.1103/PhysRevC.91.025805
L. Lindblom and B. J. Owen, Phys. Rev. D 65, 063006 (2002). PRVDAQ 0556-2821 10.1103/PhysRevD.65.063006
J. Madsen, Phys. Rev. Lett. 81, 3311 (1998). PRLTAO 0031-9007 10.1103/PhysRevLett.81.3311
L. Lindblom and G. Mendell, Phys. Rev. D 61, 104003 (2000). PRVDAQ 0556-2821 10.1103/PhysRevD.61.104003
M. G. Alford, S. Mahmoodifar, and K. Schwenzer, Phys. Rev. D 85, 024007 (2012). PRVDAQ 1550-7998 10.1103/PhysRevD.85.024007
M. Nayyar and B. J. Owen, Phys. Rev. D 73, 084001 (2006). PRVDAQ 1550-7998 10.1103/PhysRevD.73.084001
N. Andersson and K. D. Kokkotas, Int. J. Mod. Phys. D 10, 381 (2001). IMPDEO 0218-2718 10.1142/S0218271801001062
J. L. Rodríguez-Sánchez, J. Benlliure, J. Taieb, A. Chatillon, C. Paradela, Phys. Rev. C 90, 064606 (2014). PRVCAN 0556-2813 10.1103/PhysRevC.90.064606
Y. Ayyad, J. Benlliure, J. L. Rodríguez-Sánchez, A. Bacquias, A. Boudard, E. Casarejos, T. Enqvist, M. Fernandez, V. Henzl, V. Henzlova, Phys. Rev. C 91, 034601 (2015). PRVCAN 0556-2813 10.1103/PhysRevC.91.034601
J. L. Rodríguez-Sánchez, Benlliure, J. J. Taieb, H. Alvarez-Pol, L. Audouin, Phys. Rev. C 91, 064616 (2015); PRVCAN 0556-2813 10.1103/PhysRevC.91.064616
J. L. Rodríguez-Sánchez, J. Benlliure, H. Alvarez-Pol, L. Audouin, Y. Ayyad, Phys. Rev. C 92, 044612 (2015). PRVCAN 0556-2813 10.1103/PhysRevC.92.044612
C. Schmitt, K.-H. Schmidt, A. Kelić, A. Heinz, B. Jurado, and P. N. Nadtochy, Phys. Rev. C 81, 064602 (2010). PRVCAN 0556-2813 10.1103/PhysRevC.81.064602
J. L. Rodríguez-Sánchez, J. Benlliure, C. Paradela, Y. Ayyad, E. Casarejos, Phys. Rev. C 94, 034605 (2016). PRVCAN 2469-9985 10.1103/PhysRevC.94.034605
H. Ohm, T. Hermes, W. Borgs, H. R. Koch, R. Maier, D. Prasuhn, Phys. Rev. C 55, 3062 (1997). PRVCAN 0556-2813 10.1103/PhysRevC.55.3062
P. Kulessa, Phys. Lett. B 427, 403 (1998). PYLBAJ 0370-2693 10.1016/S0370-2693(98)00397-9
D. Mancusi, A. Boudard, J. Cugnon, J.-C. David, P. Kaitaniemi, and S. Leray, Phys. Rev. C 90, 054602 (2014). PRVCAN 0556-2813 10.1103/PhysRevC.90.054602
J. L. Rodríguez-Sánchez, J. Cugnon, J. C. David, J. Hirtz, A. Kelić-Heil, and S. Leray, Phys. Rev. C 105, 014623 (2022). PRVCAN 2469-9985 10.1103/PhysRevC.105.014623
A. Boudard, J. Cugnon, J.-C. David, S. Leray, and D. Mancusi, Phys. Rev. C 87, 014606 (2013). PRVCAN 0556-2813 10.1103/PhysRevC.87.014606
Th. Aoust and J. Cugnon, Phys. Rev. C 74, 064607 (2006). PRVCAN 0556-2813 10.1103/PhysRevC.74.064607
D. Mancusi, S. Lo Meo, N. Colonna, A. Boudard, M. A. Cortés-Giraldo, J. Cugnon, J.-C. David, S. Leray, J. Lerendegui-Marco, C. Massimi, and V. Vlachoudis, Eur. Phys. J. A 53, 80 (2017). EPJAFV 1434-6001 10.1140/epja/i2017-12263-0
J.-C. David, A. Boudard, J. Cugnon, J. Hirtz, S. Leray, D. Mancusi, and J. L. Rodríguez-Sánchez, Eur. Phys. J. Plus 133, 253 (2018). EPJPA3 2190-5444 10.1140/epjp/i2018-12079-9
J. Hirtz, J.-C. David, A. Boudard, J. Cugnon, S. Leray, and D. Mancusi, Eur. Phys. J. Plus 133, 436 (2018). EPJPA3 2190-5444 10.1140/epjp/i2018-12312-7
J. L. Rodríguez-Sánchez, J. C. David, J. Hirtz, J. Cugnon, and S. Leray, Phys. Rev. C 98, 021602(R) (2018). PRVCAN 2469-9985 10.1103/PhysRevC.98.021602
J. Hirtz, J.-C. David, A. Boudard, J. Cugnon, S. Leray, I. Leya, J. L. Rodríguez-Sánchez, and G. Schnabel, Phys. Rev. C 101, 014608 (2020). PRVCAN 2469-9985 10.1103/PhysRevC.101.014608
V. F. Weisskopf and D. H. Ewing, Phys. Rev. 57, 472 (1940). PHRVAO 0031-899X 10.1103/PhysRev.57.472
W. J. Huang, G. Audi, M. Wang, F. G. Kondev, S. Naimi, and X. Xu, Chin. Phys. C 41, 030002 (2017). CPCHCQ 1674-1137 10.1088/1674-1137/41/3/030002
W. W. Qu, Nucl. Phys. A868, 1 (2011). NUPBBO 0550-3213 10.1016/j.nuclphysa.2011.08.002
N. Bohr and J. A. Wheeler, Phys. Rev. 56, 426 (1939). PHRVAO 0031-899X 10.1103/PhysRev.56.426
L. G. Moretto, Nucl. Phys. A247, 211 (1975). NUPBBO 0550-3213 10.1016/0375-9474(75)90632-6
A. J. Sierk, Phys. Rev. C 33, 2039 (1986). PRVCAN 0556-2813 10.1103/PhysRevC.33.2039
P. Möller, J. R. Nix, W. D. Myers, and W. J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995). ADNDAT 0092-640X 10.1006/adnd.1995.1002
D. B. Ion, M. Ivaşcu, and R. Ion-Mihai, Rev. Roum. Phys. 34, 461 (1989). RRPQAN 0035-4090
F. Minato, S. Chiba, and K. Hagino, Nucl. Phys. A831, 150 (2009). NUPBBO 0550-3213 10.1016/j.nuclphysa.2009.09.063
H. A. Kramers, Physica 7, 284 (1940). PHYSAG 0031-8914 10.1016/S0031-8914(40)90098-2
J. R. Nix, Ann. Phys. (N.Y.) 41, 52 (1967). APNYA6 0003-4916 10.1016/0003-4916(67)90199-6
B. Jurado, K.-H. Schmidt, and J. Benlliure, Phys. Lett. B 553, 186 (2003). PYLBAJ 0370-2693 10.1016/S0370-2693(02)03234-3
B. Jurado, C. Schmitt, K.-H. Schmidt, J. Benlliure, and A. R. Junghans, Nucl. Phys. A747, 14 (2005). NUPBBO 0550-3213 10.1016/S0370-2693(02)03234-3
R. W. Hasse and W. D. Myers, Geometrical Relationships of Macroscopic Nuclear Physics (Springer-Verlag, Berlin, 1988).
J. Benlliure and J. L. Rodríguez-Sánchez, Eur. Phys. J. Plus 132, 120 (2017). EPJPA3 2190-5444 10.1140/epjp/i2017-11377-0
J. L. Rodríguez-Sánchez, J. Benlliure, J. Taieb, H. Alvarez-Pol, L. Audouin, Phys. Rev. C 94, 061601(R) (2016). PRVCAN 2469-9985 10.1103/PhysRevC.94.061601
The uncertainty is calculated with the standard deviation of the mean, using the results listed in the Table I for hypernuclear matter.
http://www.fair.de.
https://hiaf.impcas.ac.cn.
J. Adamczewski-Musch (The HADES Collaboration), Nat. Phys. 15, 1040 (2019). NPAHAX 1745-2473 10.1038/s41567-019-0583-8
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.