Pelat, A., Gautier, F., Conlon, S.C., Semperlotti, F., The acoustic black hole: A review of theory and applications. J. Sound Vib., 476, 2020, 115316.
Ji, H., Huang, W., Qiu, J., Cheng, L., Mechanics problems in application of acoustic black hole structures. Adv. Mech., 47, 2017, 333.
Mironov, M., Propagation of a flexural wave in a plate whose thickness decreases smoothly to zero in a finite interval. Sov. Phys. Acoust. 34 (1988), 318–319.
Krylov, V.V., On the velocities of localized vibration modes in immersed solid wedges. J. Acoust. Soc. Am. 103 (1998), 767–770.
Krylov, V.V., New type of vibration dampers utilising the effect of acoustic 'black holes. Acta Acust. United Ac. 90 (2004), 830–837.
O'Boy, D., Krylov, V.V., Damping of flexural vibrations in circular plates with tapered central holes. J. Sound Vib. 330 (2011), 2220–2236.
S.C. Conlon, J.B. Fahnline, F. Semperlotti, Numerical analysis of the vibroacoustic properties of plates with embedded grids of acoustic black holes, J. Acoust. Soc. Am., 137 (1), 447-457.
Tang, L., Cheng, L., Ultrawide band gaps in beams with double-leaf acoustic black hole indentations. J. Acoust. Soc. Am. 142 (2017), 2802–2807.
Tang, L., Cheng, L., Enhanced acoustic black hole effect in beams with a modified thickness profile and extended platform. J. Sound Vib. 391 (2017), 116–126.
Zhou, T., Cheng, L., A resonant beam damper tailored with acoustic black hole features for broadband vibration reduction. J. Sound Vib. 430 (2018), 174–184.
Feurtado, P.A., Conlon, S.C., Transmission loss of plates with embedded acoustic black holes. J. Acoust. Soc. Am. 142 (2017), 1390–1398.
Ma, L., Cheng, L., Sound radiation and transonic boundaries of a plate with an acoustic black hole. J. Acoust. Soc. Am. 145 (2019), 164–172.
Zhao, L., Conlon, S.C., Semperlotti, F., Broadband energy harvesting using acoustic black hole structural tailoring. Smart Mater. Struct., 23, 2014, 065021.
Ji, H., Liang, Y., Qiu, J., Cheng, L., Wu, Y., Enhancement of vibration based energy harvesting using compound acoustic black holes. Mech. Syst. Sig. Process. 132 (2019), 441–456.
Krylov, V.V., Acoustic black holes: recent developments in the theory and applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61 (2014), 1296–1306.
Chong, B.M.P., Tan, L.B., Lim, K.M., Lee, H.P., A review on acoustic black-holes (ABH) and the experimental and numerical study of ABH-featured 3D printed beams. Int. J. Appl. Mech. Eng., 9, 2017, 1750078.
Lee, J.Y., Jeon, W., Vibration damping using a spiral acoustic black hole. J. Acoust. Soc. Am. 141 (2017), 1437–1445.
Jia, X., Du, Y., Zhao, K., Vibration control of variable thickness plates with embedded acoustic black holes and dynamic vibration absorbers. ASME 2015 Noise Control and Acoustics Division Conf. at InterNoise, 2015.
Zhao, L., Low-frequency vibration reduction using a sandwich plate with periodically embedded acoustic black holes. J. Sound Vib. 441 (2019), 165–171.
Zhang, Y., Chen, K., Zhou, S., Wei, Z., An ultralight phononic beam with a broad low-frequency band gap using the complex lattice of acoustic black holes. Appl. Phys. Express, 12, 2019, 077002.
Nayfeh, A., Ibrahim, R., Nonlinear interactions: analytical, computational, and experimental methods. Appl. Mech. Rev. 54 (2001), B60–B61.
Nucera, F., Vakakis, A.F., McFarland, D., Bergman, L., Kerschen, G., Targeted energy transfers in vibro-impact oscillators for seismic mitigation. Nonlin. Dyn. 50 (2007), 651–677.
Denis, V., Pelat, A., Touzé, C., Gautier, F., Improvement of the acoustic black hole effect by using energy transfer due to geometric nonlinearity. Int. J. Non Linear Mech. 94 (2017), 134–145.
Gusev, V.E., Ni, C., Lomonosov, A., Shen, Z., Propagation of flexural waves in inhomogeneous plates exhibiting hysteretic nonlinearity: Nonlinear acoustic black holes. Ultrasonics 61 (2015), 126–135.
Li, H., Touzé, C., Gautier, F., Pelat, A., Linear and nonlinear dynamics of a plate with acoustic black hole, geometric and contact nonlinearity for vibration mitigation. J. Sound Vib., 508, 2021, 116206.
L. Zhang, G. Kerschen, L. Cheng, Nonlinear Features and Energy Transfer in an Acoustic Black Hole Beam through Intentional Electromechanical Coupling, Mech. Syst. Sig. Process.
Zhang, L., Kerschen, G., Cheng, L., Electromechanical Coupling and Energy Conversion in a PZT-Coated Acoustic Black Hole Beam. Int. J. Appl. Mech. Eng., 12, 2020, 2050095.
Wang, Y., Du, J., Cheng, L., Power flow and structural intensity analyses of acoustic black hole beams. Mech. Syst. Sig. Process. 131 (2019), 538–553.
Detroux, T., Renson, L., Masset, L., Kerschen, G., The harmonic balance method for bifurcation analysis of large-scale nonlinear mechanical systems. Comput. Meth. Appl. Mech. Eng. 296 (2015), 18–38.
Chang, S.Y., Studies of Newmark method for solving nonlinear systems: (I) basic analysis. J. Chin. Inst. Eng. 27 (2004), 651–662.
Raze, G., Jadoul, A., Guichaux, S., Broun, V., Kerschen, G., A digital nonlinear piezoelectric tuned vibration absorber. Smart Mater. Struct., 29, 2019, 015007.
Fleming, A.J., Behrens, S., Moheimani, S.O.R., Synthetic impedance for implementation of piezoelectric shunt-damping circuits. Electron. Lett., 36(18), 2000, 1525.