Bioimpedance; Biomedical monitoring; Continuous vitals monitoring; Electrocardiography; medical device; Monitoring; near real-time; sensor signal processing; Sensors; Temperature measurement; Temperature sensors; wearable electronics; wireless; Biomedical equipment; Blood pressure; Firmware; Signal processing; Wearable sensors; Bio-impedance; Continuous vital monitoring; Early warning score; Medical Devices; Near-real time; Sensor signal processing; Sensor signals; Signal-processing; Vital parameters
Abstract :
[en] In this work, we present a new device to monitor the five main vital parameters of hospitalized patients: heart rate, respiratory rate, blood oxygen saturation, blood pressure and temperature. The device consists of one single unit placed on the chest with two electrodes connected to the patient. The device continuously acquires the electrocardiogram, 3-wavelength photoplethysmogram, bioimpedance, body temperature and 3-axis acceleration. These raw data are securely sent via a WiFi access point to a local server where algorithms are running to calculate the five vital parameters, combined with the level of activity and the posture. Alarms, live stream, and a real-time estimation of the early warning score used to assess the instantaneous state of a patient are available to nurses to react quickly and adequately if needed. Thanks to its small form factor and weight the device is worn unobtrusively by the patient who can move without being restrained by wires; a small battery ensures an autonomy of a few days. In this paper, the firmware and hardware architectures are detailed comprising the list of the sensors, the main chips used and the casing. The relationships between what the sensors measure and the vital parameters of interest are discussed. IEEE
Disciplines :
Electrical & electronics engineering
Author, co-author :
Bellier, Pierre ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Systèmes microélectroniques intégrés
Coppieters 't Wallant D.; Belgium > Microsys Laboratory of University of Liege
Van den Bongarth H.; The Netherlands
Bijnens W.; The Netherlands
Aarts J.; The Netherlands
Vandenryt T.; Diepenbeek, Belgium
Thoelen R.; Diepenbeek, Belgium
Duflot, Patrick ; Centre Hospitalier Universitaire de Liège - CHU > > Secteur Appui méthodologique aux Projets GSI et Planification (APP)
Dupont, François ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Systèmes microélectroniques intégrés
Redouté, Jean-Michel ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Systèmes microélectroniques intégrés
Language :
English
Title :
A Wireless Low-power Single-unit Wearable System for Continuous Early Warning Score Calculation
Publication date :
2023
Journal title :
IEEE Sensors Journal
ISSN :
1530-437X
eISSN :
1558-1748
Publisher :
Institute of Electrical and Electronics Engineers Inc.
J. Gardner-Thorpe, N. Love, J. Wrightson, S. Walsh, and N. Keeling, "The value of Modified Early Warning Score (MEWS) in surgical in-patients: A prospective observational study," Ann. Roy. College Surgeons England, vol. 88, no. 6, pp. 571-575, 2006, doi: 10.1308/003588406X130615.
M. Weenk et al., "Continuous monitoring of vital signs using wearable devices on the general ward: Pilot study," JMIR mHealth uHealth, vol. 5, no. 7, p. e91, Jul. 2017, doi: 10.2196/mhealth.7208.
D. Dias and J. P. S. Cunha, "Wearable health devices-Vital sign monitoring, systems and technologies," Sensors, vol. 18, no. 8, p. 2414, Jul. 2018, doi: 10.3390/s18082414.
E. T. R. Babar and M. U. Rahman, "A smart, low cost, wearable technology for remote patient monitoring," IEEE Sensors J., vol. 21, no. 19, pp. 21947-21955, Oct. 2021, doi: 10.1109/JSEN.2021.3101146.
D. L. T. Wong et al., "An integrated wearable wireless vital signs biosensor for continuous inpatient monitoring," IEEE Sensors J., vol. 20, no. 1, pp. 448-462, Jan. 2019, doi: 10.1109/JSEN.2019.2942099.
Viatom Checkme Pro: The Medical Vital Signs Monitor: Viatom. Viatom Technology Co. Accessed: Sep. 15, 2022. [Online]. Available: https://www.viatomtech.com/checkme-pro
Sotera Digital Health. Accessed: Sep. 15, 2022. [Online]. Available: https://www.soterawireless.com/
S. S. Chreiteh, D. B. Saadi, B. Belhage, N. Nabipour, K. Hoppe, and E. V. Thomsen, "A clinical study of short-term sternal photoplethysmography: Recordings from patients with obstructive airways diseases," in Proc. 38th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), Aug. 2016, pp. 2712-2716, doi: 10.1109/EMBC.2016.7591290.
S. S. Chreiteh et al., "Estimation of respiratory rates based on photoplethysmographic measurements at the sternum," in Proc. 37th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), Aug. 2015, pp. 6570-6573, doi: 10.1109/EMBC.2015.7319898.
V. Bernard, E. Staffa, V. Mornstein, and A. Bourek, "Infrared camera assessment of skin surface temperature-Effect of emissivity," Phys. Med., vol. 29, no. 6, pp. 583-591, Nov. 2013, doi: 10.1016/j.ejmp.2012.09.003.
H.-Y. Chen, A. Chen, and C. Chen, "Investigation of the impact of infrared sensors on core body temperature monitoring by comparing measurement sites," Sensors, vol. 20, no. 10, p. 2885, May 2020, doi: 10.3390/s20102885.
B. Gribbin, A. Steptoe, and P. Sleight, "Pulse wave velocity as a measure of blood pressure change," Psychophysiology, vol. 13, no. 1, pp. 86-90, Jan. 1976, doi: 10.1111/j.1469-8986.1976.tb03344.x.
Y. Ma, J. Choi, A. Hourlier-Fargette, Y. Xue, H. U. Chung, and J. Y. Lee, "Relation between blood pressure and pulse wave velocity for human arteries," Proc. Nat. Acad. Sci. USA, vol. 115, no. 44, pp. 11144-11149, 2018, doi: 10.1073/pnas.1814392115.
A. Esmaili, M. Kachuee, and M. Shabany, "Nonlinear cuffless blood pressure estimation of healthy subjects using pulse transit time and arrival time," IEEE Trans. Instrum. Meas., vol. 66, no. 12, pp. 3299-3308, Dec. 2017, doi: 10.1109/TIM.2017.2745081.
J. Muehlsteff, X. L. Aubert, and M. Schuett, "Cuffless estimation of systolic blood pressure for short effort bicycle tests: The prominent role of the pre-ejection period," in Proc. Int. Conf. IEEE Eng. Med. Biol. Soc., Aug. 2006, pp. 5088-5092, doi: 10.1109/IEMBS.2006.260275.
G. Zhang, A. C. Cottrell, I. C. Henry, and D. B. McCombie, "Assessment of pre-ejection period in ambulatory subjects using seismocardiogram in a wearable blood pressure monitor," in Proc. 38th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), Aug. 2016, pp. 3386-3389, doi: 10.1109/EMBC.2016.7591454.
J. Lee, S. Yang, S. Lee, and H. C. Kim, "Analysis of pulse arrival time as an indicator of blood pressure in a large surgical biosignal database: Recommendations for developing ubiquitous blood pressure monitoring methods," J. Clin. Med., vol. 8, no. 11, p. 1773, Oct. 2019, doi: 10.3390/jcm8111773.
ADS129x Low-Power, 2-Channel, 24-Bit Analog Front-End for Biopotential Measurements, document SBAS502C, 2020.
IR Guide-Measuing Body Surface Temperature. Testo. Accessed: Dec. 2022. [Online]. Available: https://static-int.testo. com/media/d3/7c/e3b1d1795cee/IR-Guide-Body-Surface-Temperature-U.S.pdf
J. Pan and W. J. Tompkins, "A real-time QRS detection algorithm," IEEE Trans. Biomed. Eng., vol. BME-32, no. 3, pp. 230-236, May 1985, doi: 10.1109/TBME.1985.325532.
Y. Maeda, M. Sekine, T. Tamura, A. Moriya, T. Suzuki, and K. Kameyama, "Comparison of reflected green light and infrared photoplethysmography," in Proc. 30th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., Aug. 2008, pp. 2270-2272, doi: 10.1109/IEMBS.2008.4649649.
J. Lee, K. Matsumura, K.-I. Yamakoshi, P. Rolfe, S. Tanaka, and T. Yamakoshi, "Comparison between red, green and blue light reflection photoplethysmography for heart rate monitoring during motion," in Proc. 35th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), Jul. 2013, pp. 1724-1727, doi: 10.1109/EMBC.2013.6609852.
P. H. Charlton et al., "An impedance pneumography signal quality index: Design, assessment and application to respiratory rate monitoring," Biomed. Signal Process. Control, vol. 65, Mar. 2021, Art. no. 102339, doi: 10.1016/j.bspc.2020.102339.
J. Winderickx, P. Bellier, P. Duflot, and N. Mentens, "Communication and security trade-offs for battery-powered devices: A case study on wearable medical sensor systems," IEEE Access, vol. 9, pp. 67466-67476, 2021, doi: 10.1109/ACCESS.2021.3075980.
CC3120 SimpleLink Wi-Fi Network Processor, Internet-of-Things Solution for MCU Applications, document SWAS034A, May 2021.
Battery Safety Testing for Medical Devices. Accessed: Sep. 15, 2022. [Online]. Available: https://www.intertek.com/medical/electricaltesting/ battery-testing/
J. E. Stevenson, J. Israelsson, G. Nilsson, G. Petersson, and P. A. Bath, "Vital sign documentation in electronic records: The development of workarounds," Health Informat. J., vol. 24, no. 2, pp. 206-215, Jun. 2018, doi: 10.1177/1460458216663024.