[en] We investigated the use of different Legendre polynomial orders to estimate genetic parameters for milk production and fatty acid (FA) traits in the first lactation Walloon Holstein cows. The data set comprised 302,684 test-day records of milk yield, fat and protein contents, and FAs generated by mid-infrared (MIR) spectroscopy, C16:0 (palmitic acid), C18:1 cis-9 (oleic acid), LCFAs (long-chain FAs), SFAs (saturated FAs) and UFAs (unsaturated FAs) were studied. The models included random regression coefficients for herd-year of calving (h), additive genetic (a) and permanent environment (p) effects. The selection of the best random regression model (RRM) was based on the deviance information criterion (DIC), and genetic parameters were estimated via a Bayesian approach. For all analysed random effects, DIC values decreased as the order of the Legendre polynomials increased. Best-fit models had fifth-order (degree 4) for the p effect and ranged from second- to fifth-order (degree 1-4) for the a and h effects (LEGhap: LEG555 for milk yield and protein content; LEG335 for fat content and SFA; LEG545 for C16:0 and UFA; and LEG535 for C18:1 cis-9 and LCFA). Based on the best-fit models, an effect of overcorrection was observed in early lactation (5-35 days in milk [DIM]). On the contrary, third-order (LEG333; degree 2) models showed flat residual trajectories throughout lactation. In general, the estimates of genetic variance tended to increase over DIM, for all traits. Heritabilities for milk production traits ranged from 0.11 to 0.58. Milk FA heritabilities ranged from low-to-high magnitude (0.03-0.56). High Spearman correlations (>0.90 for all bulls and >0.97 for top 100) were found among breeding values for 155 and 305 DIM between the best RRM and LEG333 model. Therefore, third-order Legendre polynomials seem to be most parsimonious and sufficient to describe milk production and FA traits in Walloon Holstein cows.
Disciplines :
Genetics & genetic processes Animal production & animal husbandry
Author, co-author :
Paiva, José Teodoro ; Department of Animal Sciences, Universidade Federal de Viçosa, Viçosa, Brazil
Mota, Rodrigo Reis ; Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, Gembloux, Belgium
Lopes, Paulo Sávio ; Department of Animal Sciences, Universidade Federal de Viçosa, Viçosa, Brazil
Hammami, Hedi ; Université de Liège - ULiège > TERRA Research Centre > Animal Sciences (AS)
Vanderick, Sylvie ; Université de Liège - ULiège > TERRA Research Centre > Animal Sciences (AS)
Oliveira, Hinayah Rojas ; Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, Ontario, Canada
Veroneze, Renata ; Department of Animal Sciences, Universidade Federal de Viçosa, Viçosa, Brazil
Fonseca E Silva, Fabyano ; Department of Animal Sciences, Universidade Federal de Viçosa, Viçosa, Brazil
Gengler, Nicolas ; Université de Liège - ULiège > TERRA Research Centre > Animal Sciences (AS)
Language :
English
Title :
Random regression test-day models to describe milk production and fatty acid traits in first lactation Walloon Holstein cows.
The authors acknowledge the support of the Walloon Government (Service Public de Wallonie—Direction Générale Opérationnelle Agriculture, Ressources Naturelles et Environnement; SPW-DGARNE) and the use of the computation resources of the University of Liège—Gembloux Agro-Bio Tech provided by the technical platform Calcul et Modélisation Informatique (CAMI) of the TERRA Teaching and Research Centre, partly supported by the National Fund for Scientific Research (Brussels, Belgium) under Grants T.0095.19 (PDR “DEEPSELECT”) and J.0174.18 (CDR “PREDICT-2”) and the Consortium des Equipements de Calcul Intensif (CECI) of the Federation Wallonia-Brussels (Brussels, Belgium), funded by the National Fund for Scientific Research (Brussels, Belgium) funded under Grant 2.5020.11. The authors also gratefully acknowledge the financial and technical support provided by the Walloon Breeding Association (AWE, Ciney, Belgium). The authors also acknowledge the support of the CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) and Wallonia-Brussels-International (Brussels, Belgium).The authors acknowledge the support of the Walloon Government (Service Public de Wallonie—Direction Générale Opérationnelle Agriculture, Ressources Naturelles et Environnement; SPW‐DGARNE) and the use of the computation resources of the University of Liège—Gembloux Agro‐Bio Tech provided by the technical platform Calcul et Modélisation Informatique (CAMI) of the TERRA Teaching and Research Centre, partly supported by the National Fund for Scientific Research (Brussels, Belgium) under Grants T.0095.19 (PDR “DEEPSELECT”) and J.0174.18 (CDR “PREDICT‐2”) and the Consortium des Equipements de Calcul Intensif (CECI) of the Federation Wallonia‐Brussels (Brussels, Belgium), funded by the National Fund for Scientific Research (Brussels, Belgium) funded under Grant 2.5020.11. The authors also gratefully acknowledge the financial and technical support provided by the Walloon Breeding Association (AWE, Ciney, Belgium). The authors also acknowledge the support of the CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) and Wallonia‐Brussels‐International (Brussels, Belgium).
Arnould, V.-M.-R., Hammami, H., Soyeurt, H., & Gengler, N. (2010). Short communication: Genetic variation of saturated fatty acids in Holsteins in the Walloon region of Belgium. Journal of Dairy Science, 93(9), 4391–4397. https://doi.org/10.3168/jds.2010-3049
Auvray, B., & Gengler, N. (2002). Feasibility of a Wallon test-day model and study of its potential as tool for selection and management. Interbull Bulletin, 29, 123–127.
Bastin, C., Berry, D. P., Soyeurt, H., & Gengler, N. (2012). Genetic correlations of days open with production traits and contents in milk of major fatty acids predicted by mid-infrared spectrometry. Journal of Dairy Science, 95(10), 6113–6121. https://doi.org/10.3168/jds.2012-5361
Bastin, C., Gengler, N., & Soyeurt, H. (2011). Phenotypic and genetic variability of production traits and milk fatty acid contents across days in milk for Walloon Holstein first-parity cows. Journal of Dairy Science, 94(8), 4152–4163. https://doi.org/10.3168/jds.2010-4108
Bastin, C., Soyeurt, H., & Gengler, N. (2013). Genetic parameters of milk production traits and fatty acid contents in milk for Holstein cows in parity 1–3. Journal of Animal Breeding and Genetics, 130(2), 118–127. https://doi.org/10.1111/jbg.12010
Bastin, C., Théron, L., Lainé, A., & Gengler, N. (2016). On the role of mid-infrared predicted phenotypes in fertility and health dairy breeding programs. Journal of Dairy Science, 99(5), 4080–4094. https://doi.org/10.3168/jds.2015-10087
Bormann, J., Wiggans, G. R., Druet, T., & Gengler, N. (2003). Within-herd effects of age at test day and lactation stage on test-day yields. Journal of Dairy Science, 86(11), 3765–3774. https://doi.org/10.3168/jds.S0022-0302(03)73983-6
Britt, J. H., Cushman, R. A., Dechow, C. D., Dobson, H., Humblot, P., Hutjens, M. F., Jones, G. A., Ruegg, P. S., Sheldon, I. M., & Stevenson, J. S. (2018). Invited review: Learning from the future—A vision for dairy farms and cows in 2067. Journal of Dairy Science, 101(5), 3722–3741. https://doi.org/10.3168/jds.2017-14025
Cobuci, J. A., Costa, C. N., Braccini Neto, J., & de Freitas, A. F. (2011). Genetic parameters for milk production by using random regression models with different alternatives of fixed regression modeling. Revista Brasileira de Zootecnia, 40(3), 557–567. https://doi.org/10.1590/S1516-35982011000300013
Costa, C. N., de Melo, C. M. R., Packer, I. U., de Freitas, A. F., Teixeira, N. M., & Cobuci, J. A. (2008). Genetic parameters for test day milk yield of first lactation Holstein cows estimated by random regression using Legendre polynomials. Revista Brasileira de Zootecnia, 37(4), 602–608. https://doi.org/10.1590/S1516-35982008000400003
Croquet, C., Mayeres, P., Gillon, A., Vanderick, S., & Gengler, N. (2006). Inbreeding depression for global and partial economic indexes, production, type, and functional traits. Journal of Dairy Science, 89(6), 2257–2267. https://doi.org/10.3168/jds.S0022-0302(06)72297-4
De Marchi, M., Toffanin, V., Cassandro, M., & Penasa, M. (2014). Invited review: Mid-infrared spectroscopy as phenotyping tool for milk traits. Journal of Dairy Science, 97(3), 1171–1186. https://doi.org/10.3168/jds.2013-6799
Dórea, J. R. R., French, E. A., & Armentano, L. E. (2017). Use of milk fatty acids to estimate plasma nonesterified fatty acid concentrations as an indicator of animal energy balance. Journal of Dairy Science, 100(8), 6164–6176. https://doi.org/10.3168/jds.2016-12466
Druet, T., Jaffrézic, F., Boichard, D., & Ducrocq, V. (2003). Modeling lactation curves and estimation of genetic parameters for first lactation test-day records of French Holstein cows. Journal of Dairy Science, 86(7), 2480–2490. https://doi.org/10.3168/jds.S0022-0302(03)73842-9
Druet, T., Jaffrézic, F., & Ducrocq, V. (2005). Estimation of genetic parameters for test day records of dairy traits in the first three lactations. Genetics Selection Evolution, 37(3), 257–271. https://doi.org/10.1051/gse:2005001
Freitas, P. H. F., Oliveira, H. R., Silva, F. F., Fleming, A., Miglior, F., Schenkel, F. S., & Brito, L. F. (2020). Genomic analyses for predicted milk fatty acid composition throughout lactation in North American Holstein cattle. Journal of Dairy Science, 103(7), 6318–6331. https://doi.org/10.3168/jds.2019-17628
Gengler, N., Soyeurt, H., Dehareng, F., Bastin, C., Colinet, F., Hammami, H., Vanrobays, M.-L., Lainé, A., Vanderick, S., Grelet, C., Vanlierde, A., Froidmont, E., & Dardenne, P. (2016). Capitalizing on fine milk composition for breeding and management of dairy cows. Journal of Dairy Science, 99(5), 4071–4079. https://doi.org/10.3168/jds.2015-10140
Geweke, J. (1991). Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments (September).
Grelet, C., Pierna, J. A. F., Dardenne, P., Soyeurt, H., Vanlierde, A., Colinet, F., Bastin, C., Gengler, N., Baeten, V., & Dehareng, F. (2017). Standardization of milk mid-infrared spectrometers for the transfer and use of multiple models. Journal of Dairy Science, 100(10), 7910–7921. https://doi.org/10.3168/jds.2017-12720
Gross, J., van Dorland, H. A., Bruckmaier, R. M., & Schwarz, F. J. (2011). Milk fatty acid profile related to energy balance in dairy cows. Journal of Dairy Research, 78(4), 479–488. https://doi.org/10.1017/S0022029911000550
Hammami, H., Rekik, B., Soyeurt, H., Ben Gara, A., & Gengler, N. (2008). Genetic parameters for Tunisian Holsteins using a test-day random regression model. Journal of Dairy Science, 91(5), 2118–2126. https://doi.org/10.3168/jds.2007-0382
Hammami, H., Vandenplas, J., Vanrobays, M.-L., Rekik, B., Bastin, C., & Gengler, N. (2015). Genetic analysis of heat stress effects on yield traits, udder health, and fatty acids of Walloon Holstein cows. Journal of Dairy Science, 98(7), 4956–4968. https://doi.org/10.3168/jds.2014-9148
Hanuš, O., Samková, E., Křížová, L., Hasoňová, L., & Kala, R. (2018). Role of fatty acids in milk fat and the influence of selected factors on their variability—A review. Molecules, 23(7), 1636. https://doi.org/10.3390/molecules23071636
Jamrozik, J., Kistemaker, G. J., Dekkers, J. C. M., & Schaeffer, L. R. (1997). Comparison of possible covariates for use in a random regression model for analyses of test day yields. Journal of Dairy Science, 80(10), 2550–2556. https://doi.org/10.3168/jds.S0022-0302(97)76210-6
Jamrozik, J., & Schaeffer, L. R. (1997). Estimates of genetic parameters for a test day model with random regressions for yield traits of first lactation Holsteins. Journal of Dairy Science, 80(4), 762–770. https://doi.org/10.3168/jds.S0022-0302(97)75996-4
Jorjong, S., van Knegsel, A., Verwaeren, J., Lahoz, M. V., Bruckmaier, R. M., De Baets, B., Kemp, B., & Fievez, V. (2014). Milk fatty acids as possible biomarkers to early diagnose elevated concentrations of blood plasma nonesterified fatty acids in dairy cows. Journal of Dairy Science, 97(11), 7054–7064. https://doi.org/10.3168/jds.2014-8039
Kheirabadi, K. (2019). Estimates of genetic trends for daily milk yield and somatic cell score of primiparous Holstein cattle in Iran. Journal of Applied Animal Research, 47(1), 467–473. https://doi.org/10.1080/09712119.2019.1663741
Kirkpatrick, M., Lofsvold, D., & Bulmer, M. (1990). Analysis of the inheritance, selection and evolution of growth trajectories. Genetics, 124(4), 979–993. https://doi.org/10.1093/genetics/124.4.979
Loften, J. R., Linn, J. G., Drackley, J. K., Jenkins, T. C., Soderholm, C. G., & Kertz, A. F. (2014). Invited review: Palmitic and stearic acid metabolism in lactating dairy cows. Journal of Dairy Science, 97(8), 4661–4674. https://doi.org/10.3168/jds.2014-7919
López-Romero, P., & Carabaño, M. J. (2003). Comparing alternative random regression models to analyse first lactation daily milk yield data in Holstein-Friesian cattle. Livestock Production Science, 82(1), 81–96. https://doi.org/10.1016/S0301-6226(03)00003-4
Misztal, I., Tsuruta, S., Strabel, T., Auvray, B., Druet, T., & Lee, D. H. (2002). Blupf90 and related programs (Bgf90). 2001–2002.
Mota, R. R., Marques, L. F. A., Lopes, P. S., da Silva, L. P., Neto, F. R. A., de Resende, M. D. V., & Torres, R. A. (2013). Genetic evaluation using multi-trait and random regression models in Simmental beef cattle. Genetics and Molecular Research, 12(3), 2465–2480. https://doi.org/10.4238/2013.July.24.2
Narayana, S. G., Schenkel, F. S., Fleming, A., Koeck, A., Malchiodi, F., Jamrozik, J., Johnston, J., Sargolzaei, M., & Miglior, F. (2017). Genetic analysis of groups of mid-infrared predicted fatty acids in milk. Journal of Dairy Science, 100(6), 4731–4744. https://doi.org/10.3168/jds.2016-12244
Ødegard, J., Jensen, J., Klemetsdal, G., Madsen, P., & Heringstad, B. (2003). Genetic analysis of somatic cell score in Norwegian cattle using random regression test-day models. Journal of Dairy Science, 86(12), 4103–4114. https://doi.org/10.3168/jds.S0022-0302(03)74024-7
Oliveira, H. R., Brito, L. F., Lourenco, D. A. L., Silva, F. F., Jamrozik, J., Schaeffer, L. R., & Schenkel, F. S. (2019). Invited review: Advances and applications of random regression models: From quantitative genetics to genomics. Journal of Dairy Science, 102(9), 7664–7683. https://doi.org/10.3168/jds.2019-16265
Oliveira, H. R., Silva, F. F., Siqueira, O. H. G. B. D., Souza, N. O., Junqueira, V. S., Resende, M. D. V., Borquis, R. R. A., & Rodrigues, M. T. (2016). Combining different functions to describe milk, fat, and protein yield in goats using Bayesian multiple-trait random regression models1. Journal of Animal Science, 94(5), 1865–1874. https://doi.org/10.2527/jas.2015-0150
Olori, V. E., Hill, W. G., McGuirk, B. J., & Brotherstone, S. (1999). Estimating variance components for test day milk records by restricted maximum likelihood with a random regression animal model. Livestock Production Science, 61(1), 53–63. https://doi.org/10.1016/S0301-6226(99)00052-4
Padilha, A. H., Cobuci, J. A., Daltro, D. S., & Braccini Neto, J. (2016). Reliability of breeding values between random regression and 305-day lactation models. Pesquisa Agropecuária Brasileira, 51(11), 1848–1856. https://doi.org/10.1590/s0100-204x2016001100007
Peixoto, M. G. C. D., Santos, D. J. D. A., Borquis, R. R. A., Bruneli, F. Â. T., Panetto, J. C. D. C., & Tonhati, H. (2014). Random regression models to estimate genetic parameters for milk production of Guzerat cows using orthogonal Legendre polynomials. Pesquisa Agropecuária Brasileira, 49(5), 372–383. https://doi.org/10.1590/S0100-204X2014000500007
Pereira, R. J., Bignardi, A. B., El Faro, L., Verneque, R. S., Vercesi Filho, A. E., & Albuquerque, L. G. (2013). Random regression models using Legendre polynomials or linear splines for test-day milk yield of dairy Gyr (Bos indicus) cattle. Journal of Dairy Science, 96(1), 565–574. https://doi.org/10.3168/jds.2011-5051
Petrini, J., Iung, L., Rodriguez, M., Salvian, M., Pértille, F., Rovadoscki, G. A., Cassoli, L. D., Coutinho, L. L., Machado, P. F., Wiggans, G. R., & Mourão, G. B. (2016). Genetic parameters for milk fatty acids, milk yield and quality traits of a Holstein cattle population reared under tropical conditions. Journal of Animal Breeding and Genetics, 133(5), 384–395. https://doi.org/10.1111/jbg.12205
Pool, M. H., Janss, L. L. G., & Meuwissen, T. H. E. (2000). Genetic parameters of Legendre polynomials for first parity lactation curves. Journal of Dairy Science, 83(11), 2640–2649. https://doi.org/10.3168/jds.S0022-0302(00)75157-5
Prakash, V., Gupta, A. K., Gupta, A., Gandhi, R. S., Singh, A., & Chakravarty, A. K. (2017). Random regression model with heterogeneous residual variance reduces polynomial order fitted for permanent environmental effect but does not affect genetic parameters for milk production in Sahiwal cattle. Animal Production Science, 57(6), 1022. https://doi.org/10.1071/AN15347
R Development Core Team (2019). No title. http://www.r-project.org
Santos, D. J. A., Peixoto, M. G. C. D., Aspilcueta Borquis, R. R., Panetto, J. C. C., El Faro, L., & Tonhati, H. (2014). Predicting breeding values for milk yield of Guzerá (Bos indicus) cows using random regression models. Livestock Science, 167(1), 41–50. https://doi.org/10.1016/j.livsci.2014.05.023
Schaeffer, L. R. (2004). Application of random regression models in animal breeding. Livestock Production Science, 86(1–3), 35–45. https://doi.org/10.1016/S0301-6226(03)00151-9
Smith, B. J. (2007). boa: An R package for MCMC output convergence assessment and posterior inference. Journal of Statistical Software, 21(11), 1–37.
Soyeurt, H., Dardenne, P., Dehareng, F., Bastin, C., & Gengler, N. (2008). Genetic parameters of saturated and monounsaturated fatty acid content and the ratio of saturated to unsaturated fatty acids in bovine milk. Journal of Dairy Science, 91(9), 3611–3626. https://doi.org/10.3168/jds.2007-0971
Soyeurt, H., Dardenne, P., Dehareng, F., Lognay, G., Veselko, D., Marlier, M., Bertozzi, C., Mayeres, P., & Gengler, N. (2006). Estimating fatty acid content in cow milk using mid-infrared spectrometry. Journal of Dairy Science, 89(9), 3690–3695. https://doi.org/10.3168/jds.S0022-0302(06)72409-2
Soyeurt, H., Dehareng, F., Gengler, N., McParland, S., Wall, E., Berry, D. P., Coffey, M., & Dardenne, P. (2011). Mid-infrared prediction of bovine milk fatty acids across multiple breeds, production systems, and countries. Journal of Dairy Science, 94(4), 1657–1667. https://doi.org/10.3168/jds.2010-3408
Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & van der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64(4), 583–639. https://doi.org/10.1111/1467-9868.00353
Strabel, T., & Misztal, I. (1999). Genetic parameters for first and second lactation milk yields of Polish Black and White cattle with random regression test-day models. Journal of Dairy Science, 82(12), 2805–2810. https://doi.org/10.3168/jds.S0022-0302(99)75538-4
Strabel, T., Szyda, J., Ptak, E., & Jamrozik, J. (2005). Comparison of random regression test-day models for Polish Black and White cattle. Journal of Dairy Science, 88(10), 3688–3699. https://doi.org/10.3168/jds.S0022-0302(05)73055-1
Tzompa-Sosa, D. A., van Aken, G. A., van Hooijdonk, A. C. M., & van Valenberg, H. J. F. (2014). Influence of C16:0 and long-chain saturated fatty acids on normal variation of bovine milk fat triacylglycerol structure. Journal of Dairy Science, 97(7), 4542–4551. https://doi.org/10.3168/jds.2014-7937
Van Haelst, Y. N. T., Beeckman, A., Van Knegsel, A. T. M., & Fievez, V. (2008). Short communication: elevated concentrations of oleic acid and long-chain fatty acids in milk fat of multiparous subclinical ketotic cows. Journal of Dairy Science, 91(12), 4683–4686. https://doi.org/10.3168/jds.2008-1375
Xu, W., Vervoort, J., Saccenti, E., van Hoeij, R., Kemp, B., & van Knegsel, A. (2018). Milk metabolomics data reveal the energy balance of individual dairy cows in early lactation. Scientific Reports, 8(1), 15828. https://doi.org/10.1038/s41598-018-34190-4