[en] BACKGROUND: Only a fraction of patients with malignant pleural mesothelioma (MPM) will respond to chemo- or immunotherapy. For the majority, the condition will irremediably relapse after 13 to 18 months. In this study, we hypothesized that patients' outcome could be correlated to their immune cell profile. Focus was given to peripheral blood eosinophils that, paradoxically, can both promote or inhibit tumor growth depending on the cancer type.
METHODS: The characteristics of 242 patients with histologically proven MPM were retrospectively collected in three centers. Characteristics included overall survival (OS), progression-free survival (PFS), overall response rate (ORR) and disease control rate (DCR). The mean absolute eosinophil counts (AEC) were determined by averaging AEC data sets of the last month preceding the administration of chemo- or immunotherapy.
RESULTS: An optimal cutoff of 220 eosinophils/µL of blood segregated the cohort into two groups with significantly different median OS after chemotherapy (14 and 29 months above and below the threshold, p = 0.0001). The corresponding two-year OS rates were 28% and 55% in the AEC ≥ 220/µL and AEC < 220/µL groups, respectively. Based on shorter median PFS (8 vs 17 months, p < 0.0001) and reduced DCR (55.9% vs 35.2% at 6 months), the response to standard chemotherapy was significantly affected in the AEC ≥ 220/µL subset. Similar conclusions were also drawn from data sets of patients receiving immune checkpoint-based immunotherapy.
CONCLUSION: In conclusion, baseline AEC ≥ 220/µL preceding therapy is associated with worse outcome and quicker relapse in MPM.
Disciplines :
Oncology
Author, co-author :
Willems, Mégane ; Université de Liège - ULiège > TERRA Research Centre
Scherpereel, Arnaud; Department of Pneumology and Thoracic Oncology, (CHU Lille) and INSERM (ONCOTHAI), Lille, France
Wasielewski, Eric; Department of Pneumology and Thoracic Oncology, (CHU Lille) and INSERM (ONCOTHAI), Lille, France
Raskin, Jo; Department of Pulmonology and Thoracic Oncology, Antwerp University Hospital, Edegem, Belgium
Brossel, Hélène ; Université de Liège - ULiège > GIGA > GIGA Cancer - Cellular and Molecular Epigenetics
Fontaine, Alexis ; Université de Liège - ULiège > GIGA > GIGA Cancer - Cellular and Molecular Epigenetics
Grégoire, Mélanie ; Université de Liège - ULiège > TERRA Research Centre
Halkin, Louise ; Université de Liège - ULiège > Département GxABT > Microbial technologies
Jamakhani, Majeed ; Université de Liège - ULiège > GIGA > GIGA Cancer - Cellular and Molecular Epigenetics
Heinen, Vincent ; Centre Hospitalier Universitaire de Liège - CHU > > Service de pneumologie - allergologie
Louis, Renaud ; Centre Hospitalier Universitaire de Liège - CHU > > Service de pneumologie - allergologie
Duysinx, Bernard ; Centre Hospitalier Universitaire de Liège - CHU > > Service de pneumologie - allergologie
Hamaïdia, Malik ✱; Université de Liège - ULiège > Département GxABT > Microbial technologies
Willems, Luc ✱; Université de Liège - ULiège > GIGA > GIGA Cancer - Cellular and Molecular Epigenetics
F.R.S.-FNRS - Fonds de la Recherche Scientifique Télévie Belgian Foundation Against Cancer ULg FSR - Université de Liège. Fonds spéciaux pour la recherche Fonds Léon Fredericq
Funding text :
This work was supported by the Belgian Foundation against Cancer, the Fonds National de la Recherche Scientifique (FNRS), the Télévie, and the Fondation Léon Fredericq. Acknowledgments
Asciak R George V Rahman NM. Update on biology and management of mesothelioma. Eur Respir Rev (2021) 30:1–13. doi: 10.1183/16000617.0226-2020
Kazan-Allen L. Current asbestos bans (2022). Available at: http://www.ibasecretariat.org/alpha_ban_list.php (Accessed September 14, 2022).
Bray F Ferlay J Soerjomataram I Siegel RL Torre LA Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin (2018) 68:394–424. doi: 10.3322/caac.21492
Popat S Baas P Faivre-Finn C Girard N Nicholson AG Nowak AK et al. Malignant pleural mesothelioma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol (2022) 33:129–42. doi: 10.1016/j.annonc.2021.11.005
Alì G Bruno R Fontanini G. The pathological and molecular diagnosis of malignant pleural mesothelioma: A literature review. J Thorac Dis (2018) 10:S276–84. doi: 10.21037/jtd.2017.10.125
Vogelzang NJ Rusthoven JJ Symanowski J Denham C Kaukel E Ruffie P et al. Phase III study of pemetrexed in combination with cisplatin versus cisplatin alone in patients with malignant pleural mesothelioma. J Clin Oncol (2003) 21:2636–44. doi: 10.1200/JCO.2003.11.136
Fennell DA Ewings S Ottensmeier C Califano R Hanna GG Hill K et al. Nivolumab versus placebo in patients with relapsed malignant mesothelioma (CONFIRM): A multicentre, double-blind, randomised, phase 3 trial. Lancet Oncol (2021) 22:1530–40. doi: 10.1016/S1470-2045(21)00471-X
Baas P. Nivolumab plus ipilimumab should be the standard of care for first-line unresectable epithelioid mesothelioma. J Thorac Oncol (2022) 17:30–3. doi: 10.1016/j.jtho.2021.07.029
Zalcman G Mazieres J Margery J Greillier L Audigier-Valette C Moro-Sibilot D et al. Bevacizumab for newly diagnosed pleural mesothelioma in the mesothelioma avastin cisplatin pemetrexed study (MAPS): A randomised, controlled, open-label, phase 3 trial. Lancet (2016) 387:1405–14. doi: 10.1016/S0140-6736(15)01238-6
Désage AL Karpathiou G Peoc’h M Froudarakis ME. The immune microenvironment of malignant pleural mesothelioma: A literature review. Cancers (Basel) (2021) 13:1–31. doi: 10.3390/cancers13133205
Baas P Scherpereel A Nowak AK Fujimoto N Peters S Tsao AS et al. First-line nivolumab plus ipilimumab in unresectable malignant pleural mesothelioma (CheckMate 743): a multicentre, randomised, open-label, phase 3 trial. Lancet (2021) 397:375–86. doi: 10.1016/S0140-6736(20)32714-8
Fennell DA Dulloo S. Chemotherapy with or without bevacizumab should be the standard of care for first-line unresectable epithelioid mesothelioma. J Thorac Oncol (2022) 17:34–7. doi: 10.1016/j.jtho.2021.08.004
Chéné AL D’Almeida S Blondy T Tabiasco J Deshayes S Fonteneau JF et al. Pleural effusions from patients with mesothelioma induce recruitment of monocytes and their differentiation into M2 macrophages. J Thorac Oncol (2016) 11:1765–73. doi: 10.1016/j.jtho.2016.06.022
Lievense LA Cornelissen R Bezemer K Kaijen-Lambers MEH Hegmans JPJJ Aerts JGJV. Pleural effusion of patients with malignant mesothelioma induces macrophage-mediated T cell suppression. J Thorac Oncol (2016) 11:1755–64. doi: 10.1016/j.jtho.2016.06.021
Hamaidia M Gazon H Hoyos C Hoffmann GB Louis R Duysinx B et al. Inhibition of EZH2 methyltransferase decreases immunoediting of mesothelioma cells by autologous macrophages through a PD-1-dependent mechanism. JCI Insight (2019) 4:1–17. doi: 10.1172/jci.insight.128474
Gauttier V Pengam S Durand J Biteau K Mary C Morello A et al. Selective SIRPα blockade reverses tumor T cell exclusion and overcomes cancer immunotherapy resistance. J Clin Invest (2020) 130:6109–23. doi: 10.1172/JCI135528
Mola S Pinton G Erreni M Corazzari M De Andrea M Grolla AA et al. Inhibition of the histone methyltransferase EZH2 enhances protumor monocyte recruitment in human mesothelioma spheroids. Int J Mol Sci (2021) 22:1–25. doi: 10.3390/ijms22094391
Hoyos C Fontaine A Jacques JR Heinen V Louis R Duysinx B et al. HDAC inhibition with valproate improves direct cytotoxicity of monocytes against mesothelioma tumor cells. Cancers (Basel) (2022) 14:1–19. doi: 10.3390/cancers14092164
Reichman H Karo-atar D Munitz A. Emerging roles for eosinophils in the tumor microenvironment. Trends Cancer (2016) 2:664–75. doi: 10.1016/j.trecan.2016.10.002
Varricchi G Galdiero MR Loffredo S Lucarini V Marone G Mattei F et al. Eosinophils: The unsung heroes in cancer? Oncoimmunology (2018) 7:1–14. doi: 10.1080/2162402X.2017.1393134
Scherpereel A Opitz I Berghmans T Psallidas I Glatzer M Rigau D et al. ERS/ESTS/EACTS/ESTRO guidelines for the management of malignant pleural mesothelioma. Eur Respir J (2020) 55:1–31. doi: 10.1183/13993003.00953-2019
Byrne MJ Nowak AK. Modified RECIST criteria for assessment of response in malignant pleural mesothelioma. Ann Oncol (2004) 15:257–60. doi: 10.1093/annonc/mdh059
Camp RL Dolled-Filhart M Rimm DL. X-Tile: A new bio-informatics tool for biomarker assessment and outcome-based cut-point optimization. Clin Cancer Res (2004) 10:7252–9. doi: 10.1158/1078-0432.CCR-04-0713
Santoro A O’Brien ME Stahel RA Nackaerts K Baas P Karthaus M et al. Pemetrexed plus cisplatin or pemetrexed plus carboplatin for chemonaïve patients with malignant pleural mesothelioma: Results of the international expanded access program. J Thorac Oncol (2008) 3:756–63. doi: 10.1097/JTO.0b013e31817c73d6
Van Meerbeeck JP Gaafar R Manegold C Van Klaveren RJ Van Marck EA Vincent M et al. Randomized phase III study of cisplatin with or without raltitrexed in patients with malignant pleural mesothelioma: An intergroup study of the European organisation for research and treatment of cancer lung cancer group and the national cancer institute. J Clin Oncol (2005) 23:6881–9. doi: 10.1200/JCO.20005.14.589
Kovalszki A Weller PF. Eosiniophilia. Prim Care (2016) 43:607–17. doi: 10.1016/j.pop.2016.07.010.Eosinophilia
Kovalszki A Weller PF. “Eosinophils and eosinophilia“, In: Rich RR Fleisher TA Shearer WT Schroeder HW Frew A Weyand CM, editors. Clinical Immunology Principles and Practices (Fifth Edition) (2019), p. 349–61. doi: 10.1016/B978-0-7020-6896-6.00024-7
U.S. Food and Drug Administration. Clinical trial endpoints for the approval of cancer drugs and biologics: Guidance for industry (Rockville: U.S. Food and Drug Administration) (2018). pp. 1–16.
Yamazoe M Ozasa H Kim YH. Effectiveness of nivolumab on sarcomatoid malignant pleural mesothelioma with eosinophilia and eosinophilic pleural effusion. J Thorac Oncol (2019) 14:e251–3. doi: 10.1016/j.jtho.2019.06.007
Takeuchi E Takahashi N Morizumi S Tamiya H Matsuoka H Kuroda N et al. Interleukin-5-producing malignant pleural mesothelioma with eosinophilic pleural effusion. Thorac Cancer (2020) 11:3043–6. doi: 10.1111/1759-7714.13652
Yamazaki M Ohwada A Miyaji A Yamazaki H Nara T Hirai S et al. Pulmonary paragonimiasis with coincidental malignant mesothelioma. Intern Med (2008) 47:1027–31. doi: 10.2169/internalmedicine.47.0852
Grisaru-Tal S Itan M Klion AD Munitz A. A new dawn for eosinophils in the tumour microenvironment. Nat Rev Cancer (2020) 20:594–607. doi: 10.1038/s41568-020-0283-9
Simon SCS Utikal J Umansky V. Opposing roles of eosinophils in cancer. Cancer Immunol Immunother (2019) 68:823–33. doi: 10.1007/s00262-018-2255-4
Wu HX Zhuo KQ Cheng DY. Peripheral blood eosinophil as a biomarker in outcomes of acute exacerbation of chronic obstructive pulmonary disease. Int J COPD (2019) 14:3003–15. doi: 10.2147/COPD.S226783
Zhang Y Liang LR Zhang S Lu Y Chen YY Shi HZ et al. Blood eosinophilia and its stability in hospitalized COPD exacerbations are associated with lower risk of all-cause mortality. Int J COPD (2020) 15:1123–34. doi: 10.2147/COPD.S245056
Reichman H Itan M Rozenberg P Yarmolovski T Brazowski E Varol C et al. Activated eosinophils exert antitumorigenic activities in colorectal cancer. Cancer Immunol Res (2019) 7:388–400. doi: 10.1158/2326-6066.CIR-18-0494
Onesti CE Josse C Boulet D Thiry J Beaumecker B Bours V et al. Blood eosinophilic relative count is prognostic for breast cancer and associated with the presence of tumor at diagnosis and at time of relapse. Oncoimmunology (2020) 9:1–11. doi: 10.1080/2162402X.2020.1761176
Günduz S Göksu SS Arslan D Tatli AM Uysal M Gündüz UR et al. Factors affecting disease-free survival in patients with human epidermal growth factor receptor 2-positive breast cancer who receive adjuvant trastuzumab. Mol Clin Oncol (2015) 3:1109–12. doi: 10.3892/mco.2015.610
Steel JL Kim KH Dew MA Unruh ML Antoni MH Olek MC et al. Cancer-related symptom clusters, eosinophils, and survival in hepatobiliary cancer: An exploratory study. J Pain Symptom Manag (2010) 39:859–71. doi: 10.1016/j.jpainsymman.2009.09.019
Davis BP Rothenberg ME. Eosinophils and cancer. Cancer Immunol Res (2014) 2:1–9. doi: 10.1158/2326-6066.CIR-13-0196
Simon SCS Hu X Panten J Grees M Renders S Thomas D et al. Eosinophil accumulation predicts response to melanoma treatment with immune checkpoint inhibitors. Oncoimmunology (2020) 9:1–12. doi: 10.1080/2162402X.2020.1727116
Moreira A Leisgang W Schuler G Heinzerling L. Eosinophilic count as a biomarker for prognosis of melanoma patients and its importance in the response to immunotherapy. Immunotherapy (2017) 9:115–21. doi: 10.2217/imt-2016-0138
Wei Y Zhang X Wang G Zhou Y Luo M Wang S et al. The impacts of pretreatment circulating eosinophils and basophils on prognosis of stage I–III colorectal cancer. Asia Pac J Clin Oncol (2018) 14:e243–51. doi: 10.1111/ajco.12871
Tancrède-Bohin E Ionescu MA de la Salmonière P Dupuy A Rivet J Rybojad M et al. Prognostic value of blood eosinophilia in primary cutaneous T-cell lymphomas. Arch Dermatol (2004) 140:1057–61. doi: 10.1001/archderm.140.9.1057
Utsunomiya A Ishida T Inagaki A Ishii T Yano H Komatsu H et al. Clinical significance of a blood eosinophilia in adult T-cell leukemia/lymphoma: A blood eosinophilia is a significant unfavorable prognostic factor. Leuk Res (2007) 31:915–20. doi: 10.1016/j.leukres.2006.10.017
Bishara S Griffin M Cargill A Bali A Gore ME Kaye SB et al. Pre-treatment white blood cell subtypes as prognostic indicators in ovarian cancer. Eur J Obstet Gynecol Reprod Biol (2008) 138:71–5. doi: 10.1016/j.ejogrb.2007.05.012
Okauchi S Shiozawa T Miyazaki K Nishino K Sasatani Y Ohara G et al. Association between peripheral eosinophils and clinical outcomes in patients with non-small cell lung cancer treated with immune checkpoint inhibitors. Polish Arch Intern Med (2021) 131:152–60. doi: 10.20452/pamw.15776
Alves A Dias M Campainha S Barroso A. Peripheral blood eosinophilia may be a prognostic biomarker in non-small cell lung cancer patients treated with immunotherapy. J Thorac Dis (2021) 13:2716–27. doi: 10.21037/jtd-20-3525
Januskevicius A Jurkeviciute E Janulaityte I Kalinauskaite-Zukauske V Miliauskas S Malakauskas K. Blood eosinophils subtypes and their survivability in asthma patients. Cells (2020) 9:1–17. doi: 10.3390/cells9051248
Mesnil C Raulier S Paulissen G Xiao X Birrell MA Pirottin D et al. Lung-resident eosinophils represent a distinct regulatory eosinophil subset. J Clin Invest (2016) 126:3279–95. doi: 10.1172/JCI85664
Percopo CM Brenner TA Ma M Kraemer LS Hakeem RMA Lee JJ et al. SiglecF + Gr1 hi eosinophils are a distinct subpopulation within the lungs of allergen-challenged mice. J Leukoc Biol (2017) 101:321–8. doi: 10.1189/jlb.3a0416-166r
Gutierrez-Sainz L Cruz P Martinez-Recio S Higuera O Esteban-Rodriguez MI Arias-Lotto F et al. Malignant pleural mesothelioma: clinical experience and prognostic value of derived neutrophil-to-lymphocyte ratio and PD-L1 expression. Clin Transl Oncol (2021) 23:2030–5. doi: 10.1007/s12094-021-02605-w
Urso L Silic-Benussi M Boscolo A Lorenzi M Bonanno L Lunardi F et al. Detection of circulating immunosuppressive cytokines in malignant pleural mesothelioma patients for prognostic stratification. Cytokine (2021) 146:155622. doi: 10.1016/j.cyto.2021.155622
De Fonseka D Arnold DT Morley AJ Brett M Bhatt N Edey A et al. Lymphocyte predominance in blood, pleural fluid, and tumour stroma; a prognostic marker in pleural mesothelioma. BMC Pulm Med (2022) 22:1–6. doi: 10.1186/s12890-022-01968-2
Cimen F Agackiran Y Düzgün S Aloglu M Senturk A Atikcan S. Factors affecting the life expectancy in malignant pleural mesothelioma: Our 10 years of studies and experience. Med (Baltimore) (2022) 101:e30711. doi: 10.1097/md.0000000000030711
Okita R Okada M Inokawa H Murakami T Ikeda E. Prognostic values of preoperative c-reactive protein, albumin, and neutrophil ratios in patients with malignant pleural mesothelioma who underwent extrapleural pneumonectomy. Surg Oncol (2022) 43:101813. doi: 10.1016/j.suronc.2022.101813
Fournel L Charrier T Huriet M Iaffaldano A Lupo A Damotte D et al. Prognostic impact of inflammation in malignant pleural mesothelioma: A large-scale analysis of consecutive patients. Lung Cancer (2022) 166:221–7. doi: 10.1016/j.lungcan.2022.03.014
Hazarika M White RM Booth BP Wang Y Ham DYL Liang CY et al. Pemetrexed in malignant pleural mesothelioma. Clin Cancer Res (2005) 11:982–92. doi: 10.1158/1078-0432.982.11.3
Sakurada T Kakiuchi S Tajima S Horinouchi Y Konaka K Okada N et al. Pemetrexed-induced rash may be prevented by supplementary corticosteroids. Biol Pharm Bull (2015) 38:1752–6. doi: 10.1248/bpb.b15-00435
Sakurada T Nokihara H Koga T Zamami Y Goda M Yagi K et al. Prevention of pemetrexed-induced rash using low-dose corticosteroids: A phase II study. Oncologist (2022) 27:e554–60. doi: 10.1093/oncolo/oyab077
Cook AM McDonnell AM Lake RA Nowak AK. Dexamethasone co-medication in cancer patients undergoing chemotherapy causes substantial immunomodulatory effects with implications for chemo-immunotherapy strategies. Oncoimmunology (2016) 5:1–11. doi: 10.1080/2162402X.2015.1066062
Cusack RP Whetstone CE Xie Y Ranjbar M Gauvreau GM. Regulation of eosinophilia in asthma–new therapeutic approaches for asthma treatment. Cells (2021) 10:1–23. doi: 10.3390/cells10040817