Al-Mg-Sc alloy; Cooling rate; Inter granular corrosion; Precipitation; Controlled precipitation; Cooling rates; Corrosion behaviour; Grain-boundaries; Hot forming; Intergranular corrosion; Mechanical and corrosion properties; Mechanical performance; Precipitate distributions; Series alloys; Materials Science (all); Condensed Matter Physics; Mechanics of Materials; Mechanical Engineering; General Materials Science
Abstract :
[en] The hot working of 5xxx series alloys with Mg ≥3.5 wt% is a concern due to the precipitation of β (Al3Mg2) phase at grain boundaries favoring Inter Granular Corrosion (IGC). The mechanical and corrosion properties of a new 5028-H116 Al-Mg-Sc alloy under various β precipitates distribution is analyzed by imposing different cooling rates from the hot forming temperature (i.e. 325 °C). The mechanical properties are maintained regardless of the heat treatment. However, the different nucleation sites and volume fractions of β precipitates for different cooling rates critically affect IGC. Controlled furnace cooling after the 325 °C heat treatment is ideal in 5028-H116 alloy to reduce susceptibility to IGC after sensitization.
Disciplines :
Materials science & engineering
Author, co-author :
Krishnamurthy, Sanjay C.; Université catholique de Louvain, Institute of Mechanics, Materials and Civil Engineering (iMMC), IMAP, Louvain-la-Neuve, Belgium
Arseenko, Mariia; Université catholique de Louvain, Institute of Mechanics, Materials and Civil Engineering (iMMC), IMAP, Louvain-la-Neuve, Belgium
Kashiwar, Ankush; Université catholique de Louvain, Institute of Mechanics, Materials and Civil Engineering (iMMC), IMAP, Louvain-la-Neuve, Belgium ; Department of Physics, Electron Microscopy for Materials Science (EMAT), University of Antwerp, Antwerpen, Belgium
Dufour, Philippe; SONACA, Gosselies, Belgium
Marchal, Yves ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Fabrication mécanique ; SONACA, Gosselies, Belgium
Delahaye, Jocelyn ; Université de Liège - ULiège > Université de Liège - ULiège
Idrissi, Hosni; Université catholique de Louvain, Institute of Mechanics, Materials and Civil Engineering (iMMC), IMAP, Louvain-la-Neuve, Belgium ; Department of Physics, Electron Microscopy for Materials Science (EMAT), University of Antwerp, Antwerpen, Belgium
Pardoen, Thomas; Université catholique de Louvain, Institute of Mechanics, Materials and Civil Engineering (iMMC), IMAP, Louvain-la-Neuve, Belgium
Mertens, Anne ; Université de Liège - ULiège > Aérospatiale et Mécanique (A&M)
Simar, Aude; Université catholique de Louvain, Institute of Mechanics, Materials and Civil Engineering (iMMC), IMAP, Louvain-la-Neuve, Belgium
Language :
English
Title :
Controlled precipitation in a new Al-Mg-Sc alloy for enhanced corrosion behavior while maintaining the mechanical performance
Eremeev, N.V., Predko, P.Y., Eremeev, V.V., Bespalov, A.V., Bochvar, S.G., Technological aspects of thin plate production for aircraft construction based on Al–Mg–Sc alloys. Inorg. Mater. Appl. Res. 12:2 (2021), 288–295, 10.1134/S2075113321020131.
Mann, V.K., Krokhin, A.Y., Alabin, A.N., Frolov, V.F., Redkin, I.A., Vahromov, R.O., Al-Mg-Sc alloys for sheet, plate, and additive manufacturing for automotive and aerospace. Light Metal Age 74:5 (2016), 12–16 Retrieved from https://elibrary.ru/item.asp?id=29551799 Retrieved from.
Zimmermann, F., Brosius, A., Beyer, R.E., Standfuß, J., Jahn, A., Banke, D., Creep forming of very thin AlMgSc sheets for aeronautical applications. Procedia Manufacturing, vol. 15, 2018, Elsevier, 1008–1015, 10.1016/j.promfg.2018.07.393.
Jambu, S., Lenczowski, B., Rauh, R.J.K., Creep forming of AlMgSc alloys for aeronautic and space applications. Proceedings of the 23rd International Congress of Aeronautical Sciences, 2002.
Vorel, M., Hinsch, S., Konopka, M., Scheerer, M., AlMgSc alloy 5028 status of maturation. 7Th European Conference for Aeronautics and Space Sciences (Eucass), 2017, 10.13009/EUCASS2017-633.
Zhang, R., Knight, S.P., Holtz, R.L., Goswami, R., Davies, C.H.J., Birbilis, N., A survey of sensitization in 5xxx series aluminum alloys. Corrosion, vol. 72, 2016, 144–159, 10.5006/1787.
Starink, M.J., Zahra, A.M., β’ and β precipitation in an Al-Mg alloy studied by DSC and TEM. Acta Mater. 46:10 (1998), 3381–3397, 10.1016/S1359-6454(98)00053-6.
Scotto D'Antuono, D., β Phase Growth and Precipitation in the 5xxx Series Aluminum Alloy System. Ph. D. Thesis. 2017, Drexel University.
Goswami, R., Spanos, G., Pao, P.S., Holtz, R.L., Precipitation behavior of the ß phase in Al-5083. Mater. Sci. Eng. A 527:4–5 (2010), 1089–1095, 10.1016/j.msea.2009.10.007.
Yi, G., Cullen, D.A., Littrell, K.C., Golumbfskie, W., Sundberg, E., Free, M.L., Characterization of Al-Mg alloy aged at low temperatures. Metallurg. Mater. Trans. A Phys. Metallurg. Mater. Sci. 48:4 (2017), 2040–2050, 10.1007/s11661-017-3992-2.
Yan, J., Heckman, N.M., Velasco, L., Hodge, A.M., Improve sensitization and corrosion resistance of an Al-Mg alloy by optimization of grain boundaries. Sci. Rep., 6, 2016, 10.1038/srep26870.
Scotto D'Antuono, D., Gaies, J., Golumbfskie, W., Taheri, M.L., Direct measurement of the effect of cold rolling on β phase precipitation kinetics in 5xxx series aluminum alloys. Acta Mater. 123 (2017), 264–271, 10.1016/j.actamat.2016.10.060.
Desai Choundraj, J., Kacher, J., Influence of misorientation angle and local dislocation density on β-phase distribution in Al 5xxx alloys. Sci. Rep. 12:1 (2022), 1–8, 10.1038/s41598-022-05948-8.
Picu, R.C., Zhang, D., Atomistic study of pipe diffusion in Al-Mg alloys. Acta Mater. 52:1 (2004), 161–171, 10.1016/j.actamat.2003.09.002.
Birbilis, N., Buchheit, R.G., Electrochemical characteristics of intermetallic phases in aluminum alloys. J. Electrochem. Soc., 152(4), 2005, B140, 10.1149/1.1869984.
Wu, C.T., Lee, S.L., Chen, Y.F., Bor, H.Y., Liu, K.H., Effects of Mn, Zn additions and cooling rate on mechanical and corrosion properties of Al-4.6Mg casting alloys. Materials, 13(8), 2020, 10.3390/MA13081983.
Zhang, R., Gupta, R.K., Davies, C.H.J., Hodge, A.M., Tort, M., Xia, K., Birbilis, N., The influence of grain size and grain orientation on sensitization in AA5083. Corrosion 72:2 (2016), 160–168, 10.5006/1703.
Wen, W., Zhao, Y., Morris, J.G., The effect of Mg precipitation on the mechanical properties of 5xxx aluminum alloys. Mater. Sci. Eng. A 392:1–2 (2005), 136–144, 10.1016/j.msea.2004.09.059.
Dorin, T., Ramajayam, M., Vahid, A., Langan, T., Aluminium scandium alloys. Fundamentals of Aluminium Metallurgy, 2018, 439–494, 10.1016/b978-0-08-102063-0.00012-6.
Zhang, J.Y., Gao, Y.H., Yang, C., Zhang, P., Kuang, J., Liu, G., Sun, J., Microalloying Al alloys with Sc: a review. Rare Metals, 2020, June 1, 10.1007/s12598-020-01433-1 University of Science and Technology Beijing.
Li, M. Jia, Liu, S., Wang, X. Dong, Shi, Y. Jia, Pan, Q. Lin, Zhou, X. Jie, Birbilis, N., Improved intergranular corrosion resistance of Al-Mg-Mn alloys with Sc and Zr additions. Micron, 154, 2022, 103202, 10.1016/j.micron.2021.103202.
Filatov, Y.A., Yelagin, V.I., Zakharov, V.V., New Al-Mg-Sc alloys. Mater. Sci. Eng. A 280:1 (2000), 97–101, 10.1016/S0921-5093(99)00673-5.
Tang, Z., Jiang, F., Long, M., Jiang, J., Liu, H., Tong, M., Effect of annealing temperature on microstructure, mechanical properties and corrosion behavior of Al-Mg-Mn-Sc-Zr alloy. Appl. Surf. Sci., 514, 2020, 10.1016/j.apsusc.2020.146081.
Kendig, K.L., Miracle, D.B., Strengthening mechanisms of an Al-Mg-Sc-Zr alloy. Acta Mater. 50:16 (2002), 4165–4175, 10.1016/S1359-6454(02)00258-6.
Deng, Y., Xu, G., Yin, Z., Lei, X., Huang, J., Effects of Sc and Zr microalloying additions on the recrystallization texture and mechanism of Al–Zn–Mg alloys. J. Alloys Compd. 580 (2013), 412–426, 10.1016/j.jallcom.2013.06.020.
Braun, R., Effect of thermal exposure on the microstructure, tensile properties and the corrosion behaviour of 6061 aluminium alloy sheet. Mater. Corros. 56:3 (2005), 159–165, 10.1002/maco.200403825.
Nebti, S., Hamana, D., Cizeron, G., Calorimetric study of pre-precipitation and precipitation in Al-Mg alloy. Acta Metall. Mater. 43:9 (1995), 3583–3588, 10.1016/0956-7151(95)00023-O.
Milkereit, B., Starink, M.J., Rometsch, P.A., Schick, C., Kessler, O., Review of the quench sensitivity of aluminium alloys: analysis of the kinetics and nature of quench-induced precipitation. Materials, 12(24), 2019, 10.3390/MA12244083.
ISO, ISO 6507-1:2005: Metallic materials – Vickers hardness test – Part 1: Test method. 2005, ISO Retrieved from https://www.iso.org/obp/ui/#iso:std:iso:6507:-1:ed-4:v1:en.
ASTM E8, Standard Test Methods for Tension Testing of Metallic Materials. vol. 16, 2014, ASTM International Retrieved from https://www.astm.org/e0008_e0008m-16.html.
ASTM-G67, Standard Test Method for Determining the Susceptibility to Intergranular Corrosion of 5XXX Series Aluminum Alloys by Mass Loss After Exposure to Nitric Acid (NAMLT Test). Annual Book of ASTM Standards. 2004, 1–5, 10.1520/G0067-18.
Yin, Z., Pan, Q., Zhang, Y., Jiang, F., Effect of minor Sc and Zr on the microstructure and mechanical properties of Al–Mg based alloys. Mater. Sci. Eng. A 280:1 (2000), 151–155, 10.1016/S0921-5093(99)00682-6.
Xie, J., Chen, X.P., Mei, L., Huang, G.J., Liu, Q., Investigation of the hardening behavior during recrystallization annealing in Al-Mg-Sc alloy. J. Alloys Compd., 859, 2021, 10.1016/j.jallcom.2020.157807.
Lim, M.L.C., Scully, J.R., Kelly, R.G., Intergranular corrosion penetration in an Al-Mg alloy as a function of electrochemical and metallurgical conditions. Corrosion 69:1 (2013), 35–47, 10.5006/0722.
Jiang, J., Jiang, F., Zhang, M., Tang, Z., Tong, M., Al3(Sc, Zr) precipitation in deformed Al-Mg-Mn-Sc-Zr alloy: effect of annealing temperature and dislocation density. J. Alloys Compd., 831, 2020, 10.1016/j.jallcom.2020.154856.
Xu, P., Jiang, F., Tang, Z., Yan, N., Jiang, J., Xu, X., Peng, Y., Coarsening of Al3Sc precipitates in Al-Mg-Sc alloys. J. Alloys Compd. 781 (2019), 209–215, 10.1016/j.jallcom.2018.12.133.
Mogucheva, A., Yuzbekova, D., Kaibyshev, R., Lebedkina, T., Lebyodkin, M., Effect of grain refinement on jerky flow in an Al-Mg-Sc alloy. Metall. Mater. Trans. A 47:5 (2016), 2093–2106, 10.1007/s11661-016-3381-2.
Liu, J., Yao, P., Zhao, N., Shi, C., Li, H., Li, X., Yang, S., Effect of minor Sc and Zr on recrystallization behavior and mechanical properties of novel Al-Zn-Mg-Cu alloys. J. Alloys Compd. 657 (2016), 717–725, 10.1016/j.jallcom.2015.10.122.
Ding, Y., Gao, K., Huang, H., Wen, S., Wu, X., Nie, Z., Zhou, D., Nucleation and evolution of β phase and corresponding intergranular corrosion transition at 100–230 °C in 5083 alloy containing Er and Zr. Mater. Des., 174, 2019, 107778, 10.1016/J.MATDES.2019.107778.
Zhu, Y., Cullen, D.A., Kar, S., Free, M.L., Allard, L.F., Evaluation of Al3Mg2 precipitates and Mn-rich phase in aluminum-magnesium alloy based on scanning transmission electron microscopy imaging. Metallurg. Mater. Trans. A Phys. Metallurg. Mater. Sci. 43:13 (2012), 4933–4939, 10.1007/s11661-012-1354-7.
Yan, J., Hodge, A.M., Study of β precipitation and layer structure formation in Al 5083: the role of dispersoids and grain boundaries. J. Alloys Compd. 703 (2017), 242–250, 10.1016/j.jallcom.2017.01.360.
Porter, D.A., Easterling, K.E., Sherif, M.Y., Phase Transformations in Metals and Alloys. 2021, CRC Press, Boca Raton, 297–299, 10.1201/9781003011804.