Hypnosis; non-ordinary state of consciousness; frontoparietal and midline connectivity; graph theory; electroencephalography
Résumé :
[en] Hypnosis has been shown to be of clinical utility; however, its underlying neural mechanisms remain unclear. This study aims to investigate altered brain dynamics during the non-ordinary state of consciousness induced by hypnosis. We studied high-density EEG in nine healthy subjects during eyes-closed wakefulness and during hypnosis, induced by a muscle relaxation and eyes fixation procedure. Using hypotheses based on internal and external awareness brain networks, we assessed region-wise brain connectivity between six regions of interest (right and left frontal, right and left parietal, upper and lower midline regions) at the scalp level and compared across conditions. Data-driven, graph-theory analyses were also carried out to characterize brain network topology in terms of brain network segregation and integration. During hypnosis, we observed (1) increased delta connectivity between left and right frontal, as well as between right frontal and parietal regions, (2) decreased connectivity for alpha (between right frontal and parietal and between upper and lower midline regions) and beta-2 bands (between upper midline and right frontal, frontal and parietal, also between upper and lower midline regions), and (3) increased network segregation (short-range connections) in delta and alpha bands, and increased integration (long-range connections) in beta-2 band. These higher network integration and segregation were measured bilaterally in frontal and right parietal electrodes, which were identified as central hub regions during hypnosis. This modified connectivity and increased network integration-segregation properties suggest a modification of the internal and external awareness brain networks that may reflect efficient cognitive-processing and lower incidences of mind-wandering during hypnosis.
Disciplines :
Neurosciences & comportement
Auteur, co-auteur :
Panda, Rajanikant ✱; Université de Liège - ULiège > GIGA > GIGA Consciousness - Coma Science Group ; ULiège - University of Liège [BE] > GIGA Consciousness - Sensation & Perception Research Group
Vanhaudenhuyse, Audrey ✱; Centre Hospitalier Universitaire de Liège - CHU > > Service d'algologie - soins palliatifs ; Université de Liège - ULiège > GIGA > GIGA Consciousness - Sensation & Perception Research Group
Piarulli, Andrea ; Université de Liège - ULiège > GIGA > GIGA Consciousness - Coma Science Group
Annen, Jitka ; Université de Liège - ULiège > GIGA > GIGA Consciousness - Coma Science Group
Demertzi, Athina ; Université de Liège - ULiège > GIGA > GIGA CRC In vivo Imaging - Physiology of Cognition
Alnagger, Naji ; Université de Liège - ULiège > GIGA > GIGA Consciousness - Coma Science Group
Chennu, Srivas; university of Kent > School of Computing
Laureys, Steven ; Centre Hospitalier Universitaire de Liège - CHU > > Centre du Cerveau² ; Université de Liège - ULiège > GIGA > GIGA Consciousness - Coma Science Group
Faymonville, Marie-Elisabeth ✱; Université de Liège - ULiège > Département des sciences cliniques ; Centre Hospitalier Universitaire de Liège - CHU > > Institut d'oncologie
Gosseries, Olivia ✱; Université de Liège - ULiège > GIGA > GIGA Consciousness - Coma Science Group ; Université de Liège - ULiège > GIGA > GIGA Consciousness - Sensation & Perception Research Group
✱ Ces auteurs ont contribué de façon équivalente à la publication.
Langue du document :
Anglais
Titre :
Altered brain connectivity and network topological organization in a non-ordinary state of consciousness induced by hypnosis
Date de publication/diffusion :
2023
Titre du périodique :
Journal of Cognitive Neuroscience
ISSN :
0898-929X
eISSN :
1530-8898
Maison d'édition :
Cambridge Center for Behavioral Studies, Etats-Unis
Aftanas, L. I., & Golocheikine, S. A. (2002). Non-linear dynamic complexity of the human EEG during meditation. Neuroscience Letters, 330, 143–146. https://doi.org/10.1016/S0304-3940(02)00745-0, PubMed: 12231432
Amihai, I., & Kozhevnikov, M. (2014). Arousal vs. relaxation: A comparison of the neurophysiological and cognitive correlates of Vajrayana and Theravada meditative practices. PLoS One, 9, e102990. https://doi.org/10.1371/journal.pone.0102990, PubMed: 25051268
Bakan, P. (1969). Hypnotizability, laterality of eye-movements and functional brain asymmetry. Perceptual and Motor Skills, 28, 927–932. https://doi.org/10.2466/pms.1969.28.3.927, PubMed: 5808986
Baum, G. L., Ciric, R., Roalf, D. R., Betzel, R. F., Moore, T. M., Shinohara, R. T., et al. (2017). Modular segregation of structural brain networks supports the development of executive function in youth. Current Biology, 27, 1561–1572. https://doi.org/10.1016/j.cub.2017.04.051, PubMed: 28552358
Bertolero, M. A., Yeo, B. T. T., & D’Esposito, M. (2015). The modular and integrative functional architecture of the human brain. Proceedings of the National Academy of Sciences, U.S.A., 112, E6798–E6807. https://doi.org/10.1073/pnas.1510619112, PubMed: 26598686
Bharath, R. D., Panda, R., Saini, J., Sriganesh, K., & Rao, G. S. U. (2017). Dynamic local connectivity uncovers altered brain synchrony during propofol sedation. Scientific Reports, 7, 8501. https://doi.org/10.1038/s41598-017-08135-2, PubMed: 28819211
Bhattacharya, J., & Petsche, H. (2002). Shadows of artistry: Cortical synchrony during perception and imagery of visual art. Cognitive Brain Research, 13, 179–186. https://doi.org/10.1016/S0926-6410(01)00110-0, PubMed: 11958960
Blain-Moraes, S., Lee, U. C., Ku, S. W., Noh, G. J., & Mashour, G. A. (2014). Electroencephalographic effects of ketamine on power, cross-frequency coupling, and connectivity in the alpha bandwidth. Frontiers in Systems Neuroscience, 8, 114. https://doi.org/10.3389/fnsys.2014.00114, PubMed: 25071473
Blondel, V. D., Guillaume, J. L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008, P10008. https://doi.org/10.1088/1742-5468/2008/10/P10008
Brewer, J. A., Worhunsky, P. D., Gray, J. R., Tang, Y.-Y., Weber, J., & Kober, H. (2011). Meditation experience is associated with differences in default mode network activity and connectivity. Proceedings of the National Academy of Sciences, U.S.A., 108, 20254–20259. https://doi.org/10.1073/pnas.1112029108, PubMed: 22114193
Calvo, M. G., & Beltrán, D. (2014). Brain lateralization of holistic versus analytic processing of emotional facial expressions. Neuroimage, 92, 237–247. https://doi.org/10.1016/j.neuroimage.2014.01.048, PubMed: 24495810
Carhart-Harris, R. L., Leech, R., Hellyer, P. J., Shanahan, M., Feilding, A., Tagliazucchi, E., et al. (2014). The entropic brain: A theory of conscious states informed by neuroimaging research with psychedelic drugs. Frontiers in Human Neuroscience, 8, 20. https://doi.org/10.3389/fnhum.2014.00020, PubMed: 24550805
Carhart-Harris, R. L., Muthukumaraswamy, S., Roseman, L., Kaelen, M., Droog, W., Murphy, K., et al. (2016). Neural correlates of the LSD experience revealed by multimodal neuroimaging. Proceedings of the National Academy of Sciences, U.S.A., 113, 4853–4858. https://doi.org/10.1073/pnas.1518377113, PubMed: 27071089
Chen, Q., Beaty, R. E., Cui, Z., Sun, J., He, H., Zhuang, K., et al. (2019). Brain hemispheric involvement in visuospatial and verbal divergent thinking. Neuroimage, 202, 116065. https://doi.org/10.1016/j.neuroimage.2019.116065, PubMed: 31398434
Chennu, S., Annen, J., Wannez, S., Thibaut, A., Chatelle, C., Cassol, H., et al. (2017). Brain networks predict metabolism, diagnosis and prognosis at the bedside in disorders of consciousness. Brain, 140, 2120–2132. https://doi.org/10.1093/brain/awx163, PubMed: 28666351
Chennu, S., O’Connor, S., Adapa, R., Menon, D. K., & Bekinschtein, T. A. (2016). Brain connectivity dissociates responsiveness from drug exposure during Propofol-induced transitions of consciousness. PLoS Computational Biology, 12, e1004669. https://doi.org/10.1371/journal.pcbi.1004669, PubMed: 26764466
Cohen, J. R., & D’Esposito, M. (2016). The segregation and integration of distinct brain networks and their relationship to cognition. Journal of Neuroscience, 36, 12083–12094. https://doi.org/10.1523/JNEUROSCI.2965-15.2016, PubMed: 27903719
Cole, M. W., Ito, T., & Braver, T. S. (2015). Lateral prefrontal cortex contributes to fluid intelligence through multinetwork connectivity. Brain Connectivity, 5, 497–504. https://doi.org/10.1089/brain.2015.0357, PubMed: 26165732
Crawford, H. J., Clarke, S. W., & Kitner-Triolo, M. (1996). Self-generated happy and sad emotions in low and highly hypnotizable persons during waking and hypnosis: Laterality and regional EEG activity differences. International Journal of Psychophysiology, 24, 239–266. https://doi.org/10.1016/S0167-8760(96)00067-0, PubMed: 8993998
Deco, G., Tononi, G., Boly, M., & Kringelbach, M. L. (2015). Rethinking segregation and integration: Contributions of whole-brain modelling. Nature Reviews Neuroscience, 16, 430–439. https://doi.org/10.1038/nrn3963, PubMed: 26081790
Deeley, Q., Oakley, D. A., Toone, B., Giampietro, V., Brammer, M. J., Williams, S. C. R., et al. (2012). Modulating the default mode network using hypnosis. International Journal of Clinical and Experimental Hypnosis, 60, 206–228. https://doi.org/10.1080/00207144.2012.648070, PubMed: 22443526
Demertzi, A., Soddu, A., Faymonville, M. E., Bahri, M. A., Gosseries, O., Vanhaudenhuyse, A., et al. (2011). Hypnotic modulation of resting state fMRI default mode and extrinsic network connectivity. Progress in Brain Research, 193, 309–322. https://doi.org/10.1016/B978-0-444-53839-0.00020-X, PubMed: 21854971
Demertzi, A., Soddu, A., & Laureys, S. (2013). Consciousness supporting networks. Current Opinion in Neurobiology, 23, 239–244. https://doi.org/10.1016/j.conb.2012.12.003, PubMed: 23273731
Demertzi, A., Vanhaudenhuyse, A., Noirhomme, Q., Faymonville, M. E., & Laureys, S. (2015). Hypnosis modulates behavioural measures and subjective ratings about external and internal awareness. Journal of Physiology, Paris, 109, 173–179. https://doi.org/10.1016/j.jphysparis.2015.11.002, PubMed: 26551893
Dimitriadis, S. I., Laskaris, N. A., Tsirka, V., Vourkas, M., & Micheloyannis, S. (2010). What does delta band tell us about cognitive processes: A mental calculation study. Neuroscience Letters, 483, 11–15. https://doi.org/10.1016/j.neulet.2010.07.034, PubMed: 20654696
Farb, N. A. S., Segal, Z. V., Mayberg, H., Bean, J., Mckeon, D., Fatima, Z., et al. (2007). Attending to the present: Mindfulness meditation reveals distinct neural modes of self-reference. Social Cognitive and Affective Neuroscience, 2, 313–322. https://doi.org/10.1093/scan/nsm030, PubMed: 18985137
Fornito, A., Zalesky, A., & Bullmore, E. T. (2010). Network scaling effects in graph analytic studies of human resting-state fMRI data. Frontiers in Systems Neuroscience, 4, 22. https:// doi.org/10.3389/fnsys.2010.00022, PubMed: 20592949
Gard, T., Taquet, M., Dixit, R., Hölzel, B. K., de Montjoye, Y. A., Brach, N., et al. (2014). Fluid intelligence and brain functional organization in aging yoga and meditation practitioners. Frontiers in Aging Neuroscience, 6, 76. https://doi.org/10.3389/fnagi.2014.00076, PubMed: 24795629
Girn, M., Rosas, F. E., Daws, R. E., Gallen, C. L., Gazzaley, A., & Carhart-Harris, R. L. (2023). A complex systems perspective on psychedelic brain action. Trends in Cognitive Sciences, 27, 433–445. https://doi.org/10.1016/j.tics.2023.01.003, PubMed: 36740518
Gruzelier, J. H. (2006). Frontal functions, connectivity and neural efficiency underpinning hypnosis and hypnotic susceptibility. Contemporary Hypnosis, 23, 15–32. https://doi.org/10.1002/ch.35
Guimerà, R., & Amaral, L. A. N. (2005). Functional cartography of complex metabolic networks. Nature, 433, 895–900. https://doi.org/10.1038/nature03288, PubMed: 15729348
Hardmeier, M., Hatz, F., Bousleiman, H., Schindler, C., Stam, C. J., & Fuhr, P. (2014). Reproducibility of functional connectivity and graph measures based on the Phase Lag Index (PLI) and weighted Phase Lag Index (wPLI) derived from high resolution EEG. PLoS One, 9, e108648. https://doi.org/10.1371/journal.pone.0108648, PubMed: 25286380
Harmony, T. (2013). The functional significance of delta oscillations in cognitive processing. Frontiers in Integrative Neuroscience, 7, 83. https://doi.org/10.3389/fnint.2013.00083, PubMed: 24367301
Harmony, T., Fernández, T., Silva, J., Bernal, J., Díaz-Comas, L., Reyes, A., et al. (1996). EEG delta activity: An indicator of attention to internal processing during performance of mental tasks. International Journal of Psychophysiology, 24, 161–171. https://doi.org/10.1016/S0167-8760(96)00053-0, PubMed: 8978441
Harper, J., Malone, S. M., & Bernat, E. M. (2014). Theta and delta band activity explain N2 and P3 ERP component activity in a go/no-go task. Clinical Neurophysiology, 125, 124–132. https://doi.org/10.1016/j.clinph.2013.06.025, PubMed: 23891195
Harris, A. M., Dux, P. E., & Mattingley, J. B. (2020). Awareness is related to reduced post-stimulus alpha power: A no-report inattentional blindness study. European Journal of Neuroscience, 52, 4411–4422. https://doi.org/10.1111/ejn.13947, PubMed: 29766586
Hasenkamp, W., Wilson-Mendenhall, C. D., Duncan, E., & Barsalou, L. W. (2012). Mind wandering and attention during focused meditation: A fine-grained temporal analysis of fluctuating cognitive states. Neuroimage, 59, 750–760. https://doi.org/10.1016/j.neuroimage.2011.07.008, PubMed: 21782031
Helfrich, R. F., Huang, M., Wilson, G., & Knight, R. T. (2017). Prefrontal cortex modulates posterior alpha oscillations during top–down guided visual perception. Proceedings of the National Academy of Sciences, U.S.A., 114, 9457–9462. https://doi.org/10.1073/pnas.1705965114, PubMed: 28808023
Holla, B., Panda, R., Venkatasubramanian, G., Biswal, B., Bharath, R. D., & Benegal, V. (2017). Disrupted resting brain graph measures in individuals at high risk for alcoholism. Psychiatry Research: Neuroimaging, 265, 54–64. https://doi.org/10.1016/j.pscychresns.2017.05.002, PubMed: 28531764
Horschig, J. M., Jensen, O., van Schouwenburg, M. R., Cools, R., & Bonnefond, M. (2014). Alpha activity reflects individual abilities to adapt to the environment. Neuroimage, 89, 235–243. https://doi.org/10.1016/j.neuroimage.2013.12.018, PubMed: 24361665
Imperatori, L. S., Betta, M., Cecchetti, L., Canales-Johnson, A., Ricciardi, E., Siclari, F., et al. (2019). EEG functional connectivity metrics wPLI and wSMI account for distinct types of brain functional interactions. Scientific Reports, 9, 8894. https://doi.org/10.1038/s41598-019-45289-7, PubMed: 31222021
Imperatori, L. S., Cataldi, J., Betta, M., Ricciardi, E., Ince, R. A. A., Siclari, F., et al. (2021). Cross-participant prediction of vigilance stages through the combined use of wPLI and wSMI EEG functional connectivity metrics. Sleep, 44, zsaa247. https://doi.org/10.1093/sleep/zsaa247, PubMed: 33220055
Jamieson, G. A., & Burgess, A. P. (2014). Hypnotic induction is followed by state-like changes in the organization of EEG functional connectivity in the theta and beta frequency bands in high-hypnotically susceptible individuals. Frontiers in Human Neuroscience, 8, 528. https://doi.org/10.3389/fnhum.2014.00528, PubMed: 25104928
Jasiukaitis, P., Nouriani, B., & Spiegel, D. (1996). Left hemisphere superiority for event-related potential effects of hypnotic obstruction. Neuropsychologia, 34, 661–668. https://doi.org/10.1016/0028-3932(95)00149-2, PubMed: 8783218
Jiang, H., Stieger, J., Kreitzer, M. J., Engel, S., & He, B. (2021). Frontolimbic alpha activity tracks intentional rest BCI control improvement through mindfulness meditation. Scientific Reports, 11, 6818. https://doi.org/10.1038/s41598-021-86215-0, PubMed: 33767254
Jiang, H., White, M. P., Greicius, M. D., Waelde, L. C., & Spiegel, D. (2017). Brain activity and functional connectivity associated with hypnosis. Cerebral Cortex, 27, 4083–4093. https://doi.org/10.1093/cercor/bhw220, PubMed: 27469596
Keerativittayayut, R., Aoki, R., Sarabi, M. T., Jimura, K., & Nakahara, K. (2018). Large-scale network integration in the human brain tracks temporal fluctuations in memory encoding performance. eLife, 7, e32696. https://doi.org/10.7554/eLife.32696, PubMed: 29911970
Kihlstrom, J. F., Glisky, M. L., McGovern, S., Rapcsak, S. Z., & Mennemeier, M. S. (2013). Hypnosis in the right hemisphere. Cortex, 49, 393–399. https://doi.org/10.1016/j.cortex.2012.04.018, PubMed: 22705266
Kjaer, T. W., Nowak, M., & Lou, H. C. (2002). Reflective self-awareness and conscious states: PET evidence for a common midline parietofrontal core. Neuroimage, 17, 1080–1086. https://doi.org/10.1006/nimg.2002.1230, PubMed: 12377180
Kyeong, S., Kim, J., Kim, D. J., Kim, H. E., & Kim, J. J. (2017). Effects of gratitude meditation on neural network functional connectivity and brain-heart coupling. Scientific Reports, 7, 5058. https://doi.org/10.1038/s41598-017-05520-9, PubMed: 28698643
Landry, M., Lifshitz, M., & Raz, A. (2017). Brain correlates of hypnosis: A systematic review and meta-analytic exploration. Neuroscience and Biobehavioral Reviews, 81, 75–98. https://doi.org/10.1016/j.neubiorev.2017.02.020, PubMed: 28238944
Lanfranco, R. C., Rivera-Rei, Á., Huepe, D., Ibáñez, A., & Canales-Johnson, A. (2021). Beyond imagination: Hypnotic visual hallucination induces greater lateralised brain activity than visual mental imagery. Neuroimage, 239, 118282. https://doi.org/10.1016/j.neuroimage.2021.118282, PubMed: 34146711
Lee, J. S., & Koo, B. H. (2012). Fractal analysis of EEG upon auditory stimulation during waking and hypnosis in healthy volunteers. International Journal of Clinical and Experimental Hypnosis, 60, 266–285. https://doi.org/10.1080/00207144.2012.675294, PubMed: 22681326
Li, X., Ma, R., Liangjun, P., Lv, W., Xie, Y., Chen, Y., et al. (2017). Delta coherence in resting-state EEG predicts the reduction in cigarette craving after hypnotic aversion suggestions. Scientific Reports, 7, 2430. https://doi.org/10.1038/s41598-017-01373-4, PubMed: 28546584
Lipari, S., Baglio, F., Griffanti, L., Mendozzi, L., Garegnani, M., Motta, A., et al. (2012). Altered and asymmetric default mode network activity in a “hypnotic virtuoso”: An fMRI and EEG study. Consciousness and Cognition, 21, 393–400. https://doi.org/10.1016/j.concog.2011.11.006, PubMed: 22178091
López-González, A., Panda, R., Ponce-Alvarez, A., Zamora-López, G., Escrichs, A., Martial, C., et al. (2021). Loss of consciousness reduces the stability of brain hubs and the heterogeneity of brain dynamics. Communications Biology, 4, 1037. https://doi.org/10.1038/s42003-021-02537-9, PubMed: 34489535
Maquet, P., Faymonville, M. E., Degueldre, C., Delfiore, G., Franck, G., Luxen, A., et al. (1999). Functional neuroanatomy of hypnotic state. Biological Psychiatry, 45, 327–333. https://doi.org/10.1016/S0006-3223(97)00546-5, PubMed: 10023510
Martial, C., Cassol, H., Laureys, S., & Gosseries, O. (2020). Near-death experience as a probe to explore (disconnected) consciousness. Trends in Cognitive Sciences, 24, 173–183. https://doi.org/10.1016/j.tics.2019.12.010, PubMed: 31982302
Martial, C., Mensen, A., Charland-Verville, V., Vanhaudenhuyse, A., Rentmeister, D., Bahri, M. A., et al. (2019). Neurophenomenology of near-death experience memory in hypnotic recall: A within-subject EEG study. Scientific Reports, 9, 14047. https://doi.org/10.1038/s41598-019-50601-6, PubMed: 31575924
McGeown, W. J., Mazzoni, G., Vannucci, M., & Venneri, A. (2015). Structural and functional correlates of hypnotic depth and suggestibility. Psychiatry Research, 231, 151–159. https://doi.org/10.1016/j.pscychresns.2014.11.015, PubMed: 25557062
Miyauchi, A., & Sukegawa, N. (2015). Maximizing Barber’s bipartite modularity is also hard. Optimization Letters, 9, 897–913. https://doi.org/10.1007/s11590-014-0818-7
Mohr, H., Wolfensteller, U., Betzel, R. F., Mišić, B., Sporns, O., Richiardi, J., et al. (2016). Integration and segregation of large-scale brain networks during short-term task automatization. Nature Communications, 7, 13217. https://doi.org/10.1038/ncomms13217, PubMed: 27808095
Montgomery, D. D., Dwyer, K. V., & Kelly, S. M. (2000). Relationship between QEEG relative power and hypnotic susceptibility. American Journal of Clinical Hypnosis, 43, 71–75. https://doi.org/10.1080/00029157.2000.10404256, PubMed: 10911678
Monti, M. M., Lutkenhoff, E. S., Rubinov, M., Boveroux, P., Vanhaudenhuyse, A., Gosseries, O., et al. (2013). Dynamic change of global and local information processing in propofol-induced loss and recovery of consciousness. PLoS Computational Biology, 9, e1003271. https://doi.org/10.1371/journal.pcbi.1003271, PubMed: 24146606
Naish, P. L. N. (2010). Hypnosis and hemispheric asymmetry. Consciousness and Cognition, 19, 230–234. https://doi.org/10.1016/j.concog.2009.10.003, PubMed: 19900824
Naro, A., Bramanti, A., Leo, A., Cacciola, A., Manuli, A., Bramanti, P., et al. (2018). Shedding new light on disorders of consciousness diagnosis: The dynamic functional connectivity. Cortex, 103, 316–328. https://doi.org/10.1016/j.cortex.2018.03.029, PubMed: 29684751
Nichols, T. E., & Holmes, A. P. (2002). Nonparametric permutation tests for functional neuroimaging: A primer with examples. Human Brain Mapping, 15, 1–25. https://doi.org/10.1002/hbm.1058, PubMed: 11747097
Nieminen, J. O., Gosseries, O., Massimini, M., Saad, E., Sheldon, A. D., Boly, M., et al. (2016). Consciousness and cortical responsiveness: A within-state study during non-rapid eye movement sleep. Scientific Reports, 6, 30932. https://doi.org/10.1038/srep30932, PubMed: 27491799
Northoff, G., & Bermpohl, F. (2004). Cortical midline structures and the self. Trends in Cognitive Sciences, 8, 102–107. https://doi.org/10.1016/j.tics.2004.01.004, PubMed: 15301749
Oakley, D. A., & Halligan, P. W. (2009). Hypnotic suggestion and cognitive neuroscience. Trends in Cognitive Sciences, 13, 264–270. https://doi.org/10.1016/j.tics.2009.03.004, PubMed: 19428287
Panda, R., Bharath, R. D., Upadhyay, N., Mangalore, S., Chennu, S., & Rao, S. L. (2016). Temporal dynamics of the default mode network characterize meditation-induced alterations in consciousness. Frontiers in Human Neuroscience, 10, 372. https://doi.org/10.3389/fnhum.2016.00372, PubMed: 27499738
Park, H., Thut, G., & Gross, J. (2020). Predictive entrainment of natural speech through two fronto-motor top–down channels. Language, Cognition and Neuroscience, 35, 739–751. https://doi.org/10.1080/23273798.2018.1506589, PubMed: 32939354
Prete, G., Tommasi, V., & Tommasi, L. (2020). Right news, good news! The valence hypothesis and hemispheric asymmetries in auditory imagery. Language, Cognition and Neuroscience, 35, 409–419. https://doi.org/10.1080/23273798.2019.1659990
Rho, G., Callara, A. L., Petri, G., Nardelli, M., Scilingo, E. P., Greco, A., et al. (2021). Linear and nonlinear quantitative EEG analysis during neutral hypnosis following an opened/closed eye paradigm. Symmetry, 13, 1423. https://doi.org/10.3390/sym13081423
Rimbert, S., Zaepffel, M., Riff, P., Adam, P., & Bougrain, L. (2019). Hypnotic state modulates sensorimotor beta rhythms during real movement and motor imagery. Frontiers in Psychology, 10, 2341. https://doi.org/10.3389/fpsyg.2019.02341, PubMed: 31695643
Rizkallah, J., Annen, J., Modolo, J., Gosseries, O., Benquet, P., Mortaheb, S., et al. (2019). Decreased integration of EEG source-space networks in disorders of consciousness. Neuroimage: Clinical, 23, 101841. https://doi.org/10.1016/j.nicl.2019.101841, PubMed: 31063944
Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: Uses and interpretations. Neuroimage, 52, 1059–1069. https://doi.org/10.1016/j.neuroimage.2009.10.003, PubMed: 19819337
Schmidt, B., Hecht, H., Naumann, E., & Miltner, W. H. R. (2017). The power of mind: Blocking visual perception by hypnosis. Scientific Reports, 7, 4889. https://doi.org/10.1038/s41598-017-05195-2, PubMed: 28687767
Smallwood, J., Brown, K., Baird, B., & Schooler, J. W. (2012). Cooperation between the default mode network and the frontal-parietal network in the production of an internal train of thought. Brain Research, 1428, 60–70. https://doi.org/10.1016/j.brainres.2011.03.072, PubMed: 21466793
Soffer-Dudek, N., Todder, D., Shelef, L., Deutsch, I., & Gordon, S. (2018). A neural correlate for common trait dissociation: Decreased EEG connectivity is related to dissociative absorption. Journal of Personality, 87, 295–309. https://doi.org/10.1111/jopy.12391, PubMed: 29626343
Spiegel, D. A. (1991). Neurophysiological correlates of hypnosis and dissociation. Journal of Neuropsychiatry and Clinical Neurosciences, 3, 440–445. https://doi.org/10.1176/jnp.3.4.440, PubMed: 1821268
Sporns, O. (2013). Network attributes for segregation and integration in the human brain. Current Opinion in Neurobiology, 23, 162–171. https://doi.org/10.1016/j.conb.2012.11.015, PubMed: 23294553
Teipel, S., Bakardjian, H., Gonzalez-Escamilla, G., Cavedo, E., Weschke, S., Dyrba, M., et al. (2018). No association of cortical amyloid load and EEG connectivity in older people with subjective memory complaints. Neuroimage: Clinical, 17, 435–443. https://doi.org/10.1016/j.nicl.2017.10.031, PubMed: 29159056
Timmermann, C., Roseman, L., Schartner, M., Milliere, R., Williams, L. T. J., Erritzoe, D., et al. (2019). Neural correlates of the DMT experience assessed with multivariate EEG. Scientific Reports, 9, 16324. https://doi.org/10.1038/s41598-019-51974-4, PubMed: 31745107
Tóth, B., Boha, R., Pósfai, M., Gaál, Z. A., Kónya, A., Stam, C. J., et al. (2012). EEG synchronization characteristics of functional connectivity and complex network properties of memory maintenance in the delta and theta frequency bands. International Journal of Psychophysiology, 83, 399–402. https://doi.org/10.1016/j.ijpsycho.2011.11.017, PubMed: 22201555
Tóth, B., File, B., Boha, R., Kardos, Z., Hidasi, Z., Gaál, Z. A., et al. (2014). EEG network connectivity changes in mild cognitive impairment—Preliminary results. International Journal of Psychophysiology, 92, 1–7. https://doi.org/10.1016/j.ijpsycho.2014.02.001, PubMed: 24508504
Ulett, G. A., Akpinar, S., & Itil, T. M. (1972). Quantitative EEG analysis during hypnosis. Electroencephalography and Clinical Neurophysiology, 33, 361–368. https://doi.org/10.1016/0013-4694(72)90116-2, PubMed: 4115694
van den Heuvel, M. P., & Sporns, O. (2013). Network hubs in the human brain. Trends in Cognitive Sciences, 17, 683–696. https://doi.org/10.1016/j.tics.2013.09.012, PubMed: 24231140
Vanhaudenhuyse, A., Ledoux, D., Gosseries, O., Demertzi, A., Laureys, S., & Faymonville, M. E. (2019). Can subjective ratings of absorption, dissociation, and time perception during “neutral hypnosis” predict hypnotizability?: An exploratory study. International Journal of Clinical and Experimental Hypnosis, 67, 28–38. https://doi.org/10.1080/00207144.2019.1553765, PubMed: 30702397
Vanhaudenhuyse, A., Demertzi, A., Schabus, M., Noirhomme, Q., Bredart, S., Boly, M., et al. (2011). Two distinct neuronal networks mediate the awareness of environment and of self. Journal of Cognitive Neuroscience, 23, 570–578. https://doi.org/10.1162/jocn.2010.21488, PubMed: 20515407
Vanhaudenhuyse, A., Nyssen, A.-S., & Faymonville, M.-E. (2020). Recent insight on how the neuroscientific approach helps clinicians. OBM Integrative and Complementary Medicine, 5, 028. https://doi.org/10.21926/obm.icm.2002028
Villafaina, S., Collado-Mateo, D., Cano-Plasencia, R., Gusi, N., & Fuentes, J. P. (2019). Electroencephalographic response of chess players in decision-making processes under time pressure. Physiology & Behavior, 198, 140–143. https://doi.org/10.1016/j.physbeh.2018.10.017, PubMed: 30389477
Vinck, M., Oostenveld, R., Van Wingerden, M., Battaglia, F., & Pennartz, C. M. A. (2011). An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias. Neuroimage, 55, 1548–1565. https://doi.org/10.1016/j.neuroimage.2011.01.055, PubMed: 21276857
Von Stein, A., & Sarnthein, J. (2000). Different frequencies for different scales of cortical integration: From local gamma to long range alpha/theta synchronization. International Journal of Psychophysiology, 38, 301–313. https://doi.org/10.1016/S0167-8760(00)00172-0, PubMed: 11102669
Weitzenhoffer, A. M. (2002). Scales, scales and more scales. American Journal of Clinical Hypnosis, 44, 209–219. https://doi.org/10.1080/00029157.2002.10403481, PubMed: 11799535
Weitzenhoffer, A. M., Hilgard, E. R., & Kihlstrom, J. F. (1996). Stanford Hypnotic Susceptibility Scale, Form C. Philosophical Psychology, 27, 1–54.
Winter, U., LeVan, P., Borghardt, T. L., Akin, B., Wittmann, M., Leyens, Y., et al. (2020). Content-free awareness: EEG-fcMRI correlates of consciousness as such in an expert meditator. Frontiers in Psychology, 10, 3064. https://doi.org/10.3389/fpsyg.2019.03064, PubMed: 32132942