[en] Understanding how bacteria adapt their social behavior to environmental changes is of crucial importance from both biological and clinical perspectives. Staphylococcus aureus is among the most common infecting agents in orthopedics, but its recalcitrance to the immune system and to antimicrobial treatments in the physiological microenvironment are still poorly understood. By means of optical and confocal microscopy, image pattern analysis, and mathematical modeling, we show that planktonic biofilm-like aggregates and sessile biofilm lifestyles are two co-existing and interacting phases of the same environmentally adaptive developmental process and that they exhibit substantial differences when S. aureus is grown in physiological fluids instead of common lab media. Physicochemical properties of the physiological microenvironment are proposed to be the key determinants of these differences. Besides providing a new tool for biofilm phenotypic analysis, our results suggest new insights into the social behavior of S. aureus in physiological conditions and highlight the inadequacy of commonly used lab media for both biological and clinical studies of bacterial development.
Disciplines :
Microbiology
Author, co-author :
Rivera-Yoshida, Natsuko ; Department of Mathematics, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
Bottagisio, Marta ; Laboratory of Clinical Chemistry and Microbiology, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy
Attanasi, Davide ; Laboratory of Clinical Chemistry and Microbiology, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy
Savadori, Paolo ; Department of Endodontics, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy
De Vecchi, Elena ; Laboratory of Clinical Chemistry and Microbiology, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy
Bidossi, Alessandro ; Laboratory of Clinical Chemistry and Microbiology, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy
Franci, Alessio ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Brain-Inspired Computing ; Department of Mathematics, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
Language :
English
Title :
Host Environment Shapes S. aureus Social Behavior as Revealed by Microscopy Pattern Formation and Dynamic Aggregation Analysis.
Italian Ministry of Health CONACYT - Consejo Nacional de Ciencia y Tecnología
Funding text :
Funding: This research was funded in part by the Italian Ministry of Health (RC Project), in part by Conacyt grant n. A1-S-106-10, and in part by UNAM-DGAPA PAPIIT grant IN102420.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Bidossi, A.; Bottagisio, M.; Savadori, P.; De Vecchi, E. Identification and characterization of planktonic biofilm-like aggregates in infected synovial fluids from joint infections. Front. Microbiol. 2020, 11, 1368. [CrossRef]
Bjarnsholt, T.; Alhede, M.; Alhede, M.; Eickhardt-Sørensen, S.R.; Moser, C.; Kühl, M.; Jensen, P.Ø.; Høiby, N. The in vivo biofilm. Trends Microbiol. 2013, 21, 466–474. [CrossRef] [PubMed]
Cai, Y.M. Non-surface attached bacterial aggregates: A ubiquitous third lifestyle. Front. Microbiol. 2020, 11, 3106. [CrossRef] [PubMed]
Alhede, M.; Kragh, K.N.; Qvortrup, K.; Allesen-Holm, M.; van Gennip, M.; Christensen, L.D.; Jensen, P.Ø.; Nielsen, A.K.; Parsek, M.; Wozniak, D.; et al. Phenotypes of non-attached Pseudomonas aeruginosa aggregates resemble surface attached biofilm. PLoS ONE 2011, 6, e27943. [CrossRef] [PubMed]
Ghimire, N.; Pettygrove, B.A.; Pallister, K.B.; Stangeland, J.; Stanhope, S.; Klapper, I.; Voyich, J.M.; Stewart, P.S. Direct microscopic observation of human neutrophil-Staphylococcus aureus interaction in vitro suggests a potential mechanism for initiation of biofilm infection on an implanted medical device. Infect. Immun. 2019, 87, e00745-19. [CrossRef] [PubMed]
Percival, S.L.; Suleman, L.; Vuotto, C.; Donelli, G. Healthcare-associated infections, medical devices and biofilms: Risk, tolerance and control. J. Med. Microbiol. 2015, 64, 323–334. [CrossRef]
Dastgheyb, S.; Parvizi, J.; Shapiro, I.M.; Hickok, N.J.; Otto, M. Effect of biofilms on recalcitrance of staphylococcal joint infection to antibiotic treatment. J. Infect. Dis. 2015, 211, 641–650. [CrossRef] [PubMed]
Dastgheyb, S.S.; Villaruz, A.E.; Le, K.Y.; Tan, V.Y.; Duong, A.C.; Chatterjee, S.S.; Cheung, G.Y.; Joo, H.S.; Hickok, N.J.; Otto, M. Role of phenol-soluble modulins in formation of Staphylococcus aureus biofilms in synovial fluid. Infect. Immun. 2015, 83, 2966–2975. [CrossRef]
Dastgheyb, S.S.; Hammoud, S.; Ketonis, C.; Liu, A.Y.; Fitzgerald, K.; Parvizi, J.; Purtill, J.; Ciccotti, M.; Shapiro, I.M.; Otto, M.; et al. Staphylococcal persistence due to biofilm formation in synovial fluid containing prophylactic cefazolin. Antimicrob. Agents Chemother. 2015, 59, 2122–2128. [CrossRef]
Gilbertie, J.M.; Schnabel, L.V.; Hickok, N.J.; Jacob, M.E.; Conlon, B.P.; Shapiro, I.M.; Parvizi, J.; Schaer, T.P. Equine or porcine synovial fluid as a novel ex vivo model for the study of bacterial free-floating biofilms that form in human joint infections. PLoS ONE 2019, 14, e0221012. [CrossRef] [PubMed]
Knott, S.; Curry, D.; Zhao, N.; Metgud, P.; Dastgheyb, S.S.; Purtill, C.; Harwood, M.; Chen, A.F.; Schaer, T.P.; Otto, M.; et al. Staphylococcus aureus Floating Biofilm Formation and Phenotype in Synovial Fluid Depends on Albumin, Fibrinogen, and Hyaluronic Acid. Front. Microbiol. 2021, 12, 807. [CrossRef] [PubMed]
Secor, P.R.; Michaels, L.A.; Ratjen, A.; Jennings, L.K.; Singh, P.K. Entropically driven aggregation of bacteria by host polymers promotes antibiotic tolerance in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 2018, 115, 10780–10785. [CrossRef]
Skovdal, S.M.; Hansen, L.K.; Ivarsen, D.M.; Zeng, G.; Büttner, H.; Rohde, H.; Jørgensen, N.P.; Meyer, R.L. Host factors abolish the need for polysaccharides and extracellular matrix-binding protein in Staphylococcus epidermidis biofilm formation. J. Med. Microbiol. 2021, 70, 001287. [CrossRef]
Gupta, T.T.; Gupta, N.K.; Pestrak, M.J.; Dusane, D.H.; Harro, J.M.; Horswill, A.R.; Stoodley, P. Staphylococcus aureus aggregates on orthopedic materials under varying levels of shear stress. Appl. Environ. Microbiol. 2020, 86, e01234-20. [CrossRef]
Pestrak, M.J.; Gupta, T.T.; Dusane, D.H.; Guzior, D.V.; Staats, A.; Harro, J.; Horswill, A.R.; Stoodley, P. Investigation of synovial fluid induced Staphylococcus aureus aggregate development and its impact on surface attachment and biofilm formation. PLoS ONE 2020, 15, e0231791.
Bjarnsholt, T.; Whiteley, M.; Rumbaugh, K.P.; Stewart, P.S.; Jensen, P.Ø.; Frimodt-Møller, N. The importance of understanding the infectious microenvironment. Lancet Infect. Dis. 2021, 21, 00122-5. [CrossRef]
Rivera-Yoshida, N.; Arzola, A.V.; Arias Del Angel, J.A.; Franci, A.; Travisano, M.; Escalante, A.E.; Benítez, M. Plastic multicellular development of Myxococcus xanthus: Genotype–Environment interactions in a physical gradient. R. Soc. Open Sci. 2019, 6, 181730. [CrossRef]
Ramos, K.C.H.; Rodríguez-Sánchez, E.; Del Angel, J.A.A.; Arzola, A.V.; Benítez, M.; Escalante, A.E.; Franci, A.; Volpe, G.; Rivera-Yoshida, N. The environment topography alters the transition from single-cell populations to multicellular structures in Myxococcus xanthus. Sci. Adv. 2021, 7, eabh2278. [CrossRef]
Crosby, H.A.; Kwiecinski, J.; Horswill, A.R. Staphylococcus aureus aggregation and coagulation mechanisms, and their function in host–pathogen interactions. Adv. Appl. Microbiol. 2016, 96, 1–41. [PubMed]
Mosher, D.F. Plasma fibronectin concentration: A risk factor for arterial thrombosis? Arterioscler. Thromb. Vasc. Biol. 2006, 26, 1193–1195. [CrossRef] [PubMed]
More, S.; Kotiya, A.; Kotia, A.; Ghosh, S.; Spyrou, L.A.; Sarris, I.E. Rheological properties of synovial fluid due to viscosupplements: A review for osteoarthritis remedy. Comput. Methods Programs Biomed. 2020, 196, 105644. [CrossRef] [PubMed]
Bennike, T.; Ayturk, U.; Haslauer, C.M.; Froehlich, J.W.; Proffen, B.L.; Barnaby, O.; Birkelund, S.; Murray, M.M.; Warman, M.L.; Stensballe, A.; et al. A normative study of the synovial fluid proteome from healthy porcine knee joints. J. Proteome Res. 2014, 13, 4377–4387. [CrossRef] [PubMed]
Barnhart, M.; Riddle, J.; Bluhm, G.; Quintana, C. Fibrin promotion and lysis in arthritic joints. Ann. Rheum. Dis. 1967, 26, 206. [CrossRef] [PubMed]
Anadere, I.; Chmiel, H.; Laschner, W. Viscoelasticity of “normal” and pathological synovial fluid. Biorheology 1979, 16, 179–184. [CrossRef]
Zimmerli, W. Clinical presentation and treatment of orthopaedic implant-associated infection. J. Intern. Med. 2014, 276, 111–119. [CrossRef]
Hall, C.W.; Mah, T.F. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol. Rev. 2017, 41, 276–301. [CrossRef]
Eydallin, G.; Ryall, B.; Maharjan, R.; Ferenci, T. The nature of laboratory domestication changes in freshly isolated E scherichia coli strains. Environ. Microbiol. 2014, 16, 813–828. [CrossRef]
Rivera-Yoshida, N.; Hernández-Terán, A.; Escalante, A.E.; Benítez, M. Laboratory biases hinder Eco-Evo-Devo integration: Hints from the microbial world. J. Exp. Zool. Part B Mol. Dev. Evol. 2020, 334, 14–24. [CrossRef]
Perez, K.; Patel, R. Biofilm-like aggregation of Staphylococcus epidermidis in synovial fluid. J. Infect. Dis. 2015, 212, 335–336. [CrossRef] [PubMed]
Bottagisio, M.; Soggiu, A.; Piras, C.; Bidossi, A.; Greco, V.; Pieroni, L.; Bonizzi, L.; Roncada, P.; Lovati, A.B. Proteomic analysis reveals a biofilm-like behavior of planktonic aggregates of Staphylococcus epidermidis grown under environmental pressure/stress. Front. Microbiol. 2019, 10, 1909. [CrossRef] [PubMed]
Bottagisio, M.; Barbacini, P.; Bidossi, A.; Torretta, E.; deLancey Pulcini, E.; Gelfi, C.; James, G.A.; Lovati, A.B.; Capitanio, D. Phenotypic Modulation of Biofilm Formation in a Staphylococcus epidermidis Orthopedic Clinical Isolate Grown Under Different Mechanical Stimuli: Contribution From a Combined Proteomic Study. Front. Microbiol. 2020, 11, 2194. [CrossRef] [PubMed]
Herman-Bausier, P.; El-Kirat-Chatel, S.; Foster, T.J.; Geoghegan, J.A.; Dufrêne, Y.F. Staphylococcus aureus fibronectin-binding protein A mediates cell–cell adhesion through low-affinity homophilic bonds. MBio 2015, 6, e00413-15. [CrossRef] [PubMed]
Persat, A.; Nadell, C.D.; Kim, M.K.; Ingremeau, F.; Siryaporn, A.; Drescher, K.; Wingreen, N.S.; Bassler, B.L.; Gitai, Z.; Stone, H.A. The mechanical world of bacteria. Cell 2015, 161, 988–997. [CrossRef]
Rivera-Yoshida, N.; Del Angel, J.A.A.; Benítez, M. Microbial multicellular development: Mechanical forces in action. Curr. Opin. Genet. Dev. 2018, 51, 37–45. [CrossRef]
Telis, V.R.N.; Telis-Romero, J.; Mazzotti, H.; Gabas, A.L. Viscosity of aqueous carbohydrate solutions at different temperatures and concentrations. Int. J. Food Prop. 2007, 10, 185–195. [CrossRef]
Chenlo, F.; Moreira, R.; Pereira, G.; Ampudia, A. Viscosities of aqueous solutions of sucrose and sodium chloride of interest in osmotic dehydration processes. J. Food Eng. 2002, 54, 347–352. [CrossRef]
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.