[en] The social soil-dwelling bacterium Myxococcus xanthus can form multicellular structures, known as fruiting bodies. Experiments in homogeneous environments have shown that this process is affected by the physicochemical properties of the substrate, but they have largely neglected the role of complex topographies. We experimentally demonstrate that the topography alters single-cell motility and multicellular organization in M. xanthus In topographies realized by randomly placing silica particles over agar plates, we observe that the cells' interaction with particles drastically modifies the dynamics of cellular aggregation, leading to changes in the number, size, and shape of the fruiting bodies and even to arresting their formation in certain conditions. We further explore this type of cell-particle interaction in a computational model. These results provide fundamental insights into how the environment topography influences the emergence of complex multicellular structures from single cells, which is a fundamental problem of biological, ecological, and medical relevance.
Disciplines :
Microbiology
Author, co-author :
Ramos, Corina H ; Facultad de Ciencias, Universidad Nacional Autónoma de México, Cd. de México, C.P. 4510, Mexico ; Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
Rodríguez-Sánchez, Edna ; Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
Del Angel, Juan Antonio Arias; Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
Arzola, Alejandro V ; Instituto de Física, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, México
Benítez, Mariana ; Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
Escalante, Ana E; Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
Franci, Alessio ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Brain-Inspired Computing ; Facultad de Ciencias, Universidad Nacional Autónoma de México, Cd. de México, C.P. 4510, Mexico
Volpe, Giovanni ; Department of Physics, University of Gothenburg, Gothenburg, Sweden
Rivera-Yoshida, Natsuko ; Facultad de Ciencias, Universidad Nacional Autónoma de México, Cd. de México, C.P. 4510, Mexico. natsuko.rivera@iecologia.unam.mx n.riverayoshida@gmail.com ; Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
Language :
English
Title :
The environment topography alters the way to multicellularity in Myxococcus xanthus.
Publication date :
August 2021
Journal title :
Science Advances
eISSN :
2375-2548
Publisher :
American Association for the Advancement of Science, United States
KAW - Knut and Alice Wallenberg Foundation UNAM - National Autonomous University of Mexico CONACYT - Consejo Nacional de Ciencia y Tecnología ERC - European Research Council
Funding text :
Funding: This work was supported by PAPIIT-DGAPA-UNAM IN102420, PAPIIT-DGAPA-UNAM IN111919, Conacyt Ciencia Básica A1-S-10610, H2020 European Research Council (ERC) Starting Grant ComplexSwimmers (677511), and the Knut and Alice Wallenberg Foundation.
J. Starruß, F. Peruani, V. Jakovljevic, L. Søgaard-Andersen, A. Deutsch, M. Bär, Pattern-formation mechanisms in motility mutants of Myxococcus xanthus. Interface Focus 2, 774–785 (2012).
A. Be’er, G. Ariel, A statistical physics view of swarming bacteria. Mov. Ecol. 7, 9 (2019).
D. Nishiguchi, Order and Fluctuations in Collective Dynamics of Swimming Bacteria: Experimental Exploration of Active Matter Physics (Springer Nature, 2020).
J. Velicer, L. Kroos, R. E. Lenski, Loss of social behaviors by Myxococcus xanthus during evolution in an unstructured habitat. Proc. Natl. Acad. Sci. U.S.A. 95, 12376–12380 (1998).
A. Persat, C. D. Nadell, M. K. Kim, F. Ingremeau, A. Siryaporn, K. Drescher, N. S. Wingreen, B. L. Bassler, Z. Gitai, H. A. Stone, The mechanical world of bacteria. Cell 161, 988–997 (2015).
N. Rivera-Yoshida, J. A. Arias Del Angel, M. Benítez, Microbial multicellular development: Mechanical forces in action. Curr. Opin. Genet. Dev. 51, 37–45 (2018).
A. Bidossi, M. Bottagisio, P. Savadori, E. De Vecchi, Identification and characterization of planktonic biofilm-like aggregates in infected synovial fluids from joint infections. Front. Microbiol. 11, 1368 (2020).
A. Velic, J. Hasan, Z. Li, P. K. D. V. Yarlagadda, Mechanics of bacterial interaction and death on nanopatterned surfaces. Biophys. J. 120, 217–231 (2020).
S. F. Gilbert, Ecological developmental biology: Developmental biology meets the real world. Dev. Biol. 233, 1–12 (2001).
S. E. Sultan, Commentary: The promise of ecological developmental biology. J. Exp. Zool. B Mol. Dev. Evol. 296, 1–7 (2003).
J. S. Robert, Embryology, Epigenesis and Evolution: Taking Development seriously (Cambridge Univ. Press, 2004).
N. Rivera-Yoshida, A. Hernández-Terán, A. E. Escalante, M. Benítez, Laboratory biases hinder Eco-Evo-Devo integration: Hints from the microbial world. J. Exp. Zool. Part B 334, 14–24 (2020).
G. Volpe, I. Buttinoni, D. Vogt, H.-J. Kümmerer, C. Bechinger, Microswimmers in patterned environments. Soft Matter 7, 8810–8815 (2011).
C. Bechinger, R. Di Leonardo, H. Löwen, C. Reichhardt, G. Volpe, G. Volpe, Active particles in complex and crowded environments. Rev. Mod. Phys. 88, 045006 (2016).
G. Volpe, G. Volpe, The topography of the environment alters the optimal search strategy for active particles. Proc. Natl. Acad. Sci. U.S.A. 114, 11350–11355 (2017).
G. Frangipane, G. Viznyiczai, C. Maggi, R. Savo, A. Sciortino, S. Gigan, R. Di Leonardo, Invariance properties of bacterial random walks in complex structures. Nat. Commun. 10, 2442 (2019).
C. Meel, N. Kouzel, E. R. Oldewurtel, B. Maier, Three-dimensional obstacles for bacterial surface motility. Small 8, 530–534 (2012).
S. Makarchuk, V. C. Braz, N. A. Araújo, L. Ciric, G. Volpe, Enhanced propagation of motile bacteria on surfaces due to forward scattering. Nat. Commun. 10, 4110 (2019).
R. Be'er, S. Smith, H. P. Zhang, E.-L. Florin, S. M. Payne, H. L. Swinney, Paenibacillus dendritiformis bacterial colony growth depends on surfactant but not on bacterial motion. J. Bacteriol. 191, 5758–5764 (2009).
N. V. Lowery, T. Ursell, Structured environments fundamentally alter dynamics and stability of ecological communities. Proc. Natl. Acad. Sci. U.S.A. 116, 379–388 (2019).
N. Rivera-Yoshida, A. V. Arzola, J. A. Arias del Angel, A. Franci, M. Travisano, A. E. Escalante, M. Benítez, Plastic multicellular development of Myxococcus xanthus: Genotype–environment interactions in a physical gradient. R. Soc. Open Sci. 6, 181730 (2019).
E. Whitworth, Myxobacteria: Multicellularity and Differentiation (ASM Press, 2008).
J. A. Arias Del Angel, A. E. Escalante, L. P. Martínez-Castilla, M. Benítez, An evo-devo perspective on multicellular development of myxobacteria. J. Exp. Zool. B Mol. Dev. Evol. 328, 165–178 (2017).
J. A. Arias Del Angel, V. Nanjundiah, M. Benítez, S. A. Newman, Interplay of mesoscale physics and agent-like behaviors in the parallel evolution of aggregative multicellularity. EvoDevo 11, 21 (2020).
H. Zhang, Z. Vaksman, D. B. Litwin, P. Shi, H. B. Kaplan, O. A. Igoshin, The mechanistic basis of Myxococcus xanthus rippling behavior and its physiological role during predation. PLOS Comput. Biol. 8, e1002715 (2012).
S. Thutupalli, M. Sun, F. Bunyak, K. Palaniappan, J. W. Shaevitz, Directional reversals enable Myxococcus xanthus cells to produce collective one-dimensional streams during fruiting-body formation. J. R. Soc. Interface 12, 20150049 (2015).
J. Muñoz-TU, F. J. Marcos-Torres, E. García-Bravo, A. Moraleda-Muñoz, J. Pérez, Myxobacteria: Moving, killing, feeding, and surviving together. Front. Microbiol. 7, 781 (2016).
D. Kaiser, Coupling cell movement to multicellular development in myxobacteria. Nat. Rev. Microbiol. 1, 45–54 (2003).
K. Copenhagen, R. Alert, N. S. Wingreen, J. W. Shaevitz, Topological defects promote layer formation in Myxococcus xanthus colonies. Nat. Phys. , 211–215 (2021).
T. Vicsek, A. Zafeiris, Collective motion. Phys. Rep. 517, 71–140 (2012).
F. Bahar, P. C. Pratt-Szeliga, S. Angus, J. Guo, R. D. Welch, Describing Myxococcus xanthus aggregation using Ostwald ripening equations for thin liquid films. Sci. Rep. 4, 6376 (2014).
G. Liu, A. Patch, F. Bahar, D. Yllanes, R. D. Welch, M. C. Marchetti, S. Thutupalli, J. W. Shaevitz, Self-driven phase transitions drive Myxococcus xanthus fruiting body formation. Phys. Rev. Lett. 122, 248102 (2019).
A. D. Morgan, R. C. MacLean, K. L. Hillesland, G. J. Velicer, Comparative analysis of Myxococcus predation on soil bacteria. Appl. Environ. Microbiol. 76, 6920–6927 (2010).
R. Cotter, H. B. Schüttler, O. A. Igoshin, L. J. Shimkets, Data-driven modeling reveals cell behaviors controlling self-organization during Myxococcus xanthus development. Proc. Natl. Acad. Sci. U.S.A. 114, E4592–E4601 (2017).
F. Peruani, J. Starruß, V. Jakovljevic, L. Søgaard-Andersen, A. Deutsch, M. Bär, Collective motion and nonequilibrium cluster formation in colonies of gliding bacteria. Phys. Rev. Lett. 108, 098102 (2012).
M. Bär, R. Großmann, S. Heidenreich, F. Peruani, Self-propelled rods: Insights and perspectives for active matter. Annu. Rev. Condens. Matter Phys. 11, 441–466 (2020).
R. Y. Stanier, A note on elasticotaxis in myxobacteria. J. Bacteriol. 44, 405–412 (1942).
M. Fontes, D. Kaiser, Myxococcus cells respond to elastic forces in their substrate. Proc. Natl. Acad. Sci. U.S.A. 96, 8052–8057 (1999).
D. J. Lemon, D. A. Schutzman, A. G. Garza, Bacterial surface spreading is more efficient on nematically aligned polysaccharide substrates. J. Bacteriol. 200, e00610-17 (2018).
M.-J. Dalbe, D. Cosic, M. Berhanu, A. Kudrolli, Aggregation of frictional particles due to capillary attraction. Phys. Rev. E 83, 051403 (2011).
M. Flury, S. Aramrak, Role of air-water interfaces in colloid transport in porous media: A review. Water Resour. Res. 53, 5247–5275 (2017).
I. Ho, G. Pucci, D. M. Harris, Direct measurement of capillary attraction between floating disks. Phys. Rev. Lett. 123, 254502 (2019).
K. H. Keller, M. Grady, M. Dworkin, Surface tension gradients: Feasible model for gliding motility of Myxococcus xanthus. J. Bacteriol. 155, 1358–1366 (1983).
M. Dworkin, K. H. Keller, D. Weisberg, Experimental observations consistent with a surface tension model of gliding motility of Myxococcus xanthus. J. Bacteriol. 155, 1367–1371 (1983).
E. S. Gloag, L. Turnbull, M. A. Javed, H. Wang, M. L. Gee, S. A. Wade, C. B. Withchurch, Stigmergy co-ordinates multicellular collective behaviours during Myxococcus xanthus surface migration. Sci. Rep. 6, 26005 (2016).
M. H. Swat, G. L. Thomas, J. M. Belmonte, A. Shirinifard, D. Hmeljak, J. A. Glazier, Multi-scale modeling of tissues using CompuCell3D. Methods Cell Biol. , 325–366 (2012).
A. B. Holmes, S. Kalvala, D. E. Whitworth, Spatial simulations of myxobacterial development. PLOS Comput. Biol. 6, e1000686 (2010).
J. A. A. Del Angel, N. Rivera-Yoshida, A. E. Escalante, L. P. Martínez-Castilla, M. Benítez, Role of aggregate size, multistability and communication in determining cell fate and patterning in M. xanthus. bioRxiv 627703 [Preprint]. 2019. https://doi.org/10.1101/627703.
P. Rahmani, F. Peruani, P. Romanczuk, Topological active matter in complex environments. arXiv:2010.05902 [physics.bio-ph] (2020).
J.-W. Veening, O. P. Kuipers, S. Brul, K. J. Hellingwerf, R. Kort, Effects of phosphorelay perturbations on architecture, sporulation, and spore resistance in biofilms of Bacillus subtilis. J. Bacteriol. 188, 3099–3109 (2006).
T. Andac, P. Weigmann, S. K. P. Velu, E. Pinçe, G. Volpe, G. Volpe, A. Callegari, Active matter alters the growth dynamics of coffee rings. Soft Matter 15, 1488–1496 (2019).
H. Bai, N. Cochet, A. Pauss, E. Lamy, DLVO, hydrophobic, capillary and hydrodynamic forces acting on bacteria at solid-air-water interfaces: Their relative impact on bacteria deposition mechanisms in unsaturated porous media. Colloids Surf. B Biointerfaces 150, 41–49 (2017).
H. Bai, E. Lamy, Bacteria transport and deposition in an unsaturated aggregated porous medium with dual porosity. Environ. Sci. Pollut. Res. 28, 18963–18976 (2021).
M. Dworkin, Tactic behavior of Myxococcus xanthus. J. Bacteriol. 154, 452–459 (1983).
B. Nan, D. Zusman, Uncovering the mystery of gliding motility in the myxobacteria. Annu. Rev. Genet. 45, 21–39 (2011).
A. Ducret, M.-P. Valignat, F. Mouhamar, T. Mignot, O. Theodoly, Wet-surface–enhanced ellipsometric contrast microscopy identifies slime as a major adhesion factor during bacterial surface motility. Proc. Natl. Acad. Sci. U.S.A. 109, 10036–10041 (2012).
H. Reichenbach, The ecology of the myxobacteria. Environ. Microbiol. 1, 15–21 (1999).
E. Mora Van Cauwelaert, J. A. Arias Del Angel, M. Benítez, E. M. Azpeitia, Development of cell differentiation in the transition to multicellularity: A dynamical modeling approach. Front. Microbiol. 6, 603 (2015).
Z. Yang, P. Higgs, Myxobacteria: Genomics, Cellular and Molecular Biology (Caister Academic Press, 2014).
J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, A. Cardona, Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
A. E. Pelling, Y. Li, W. Shi, J. K. Gimzewski, Nanoscale visualization and characterization of Myxococcus xanthus cells with atomic force microscopy. Proc. Natl. Acad. Sci. U.S.A. 102, 6484–6489 (2005).
J. Starruß, T. Bley, L. Søgaard-Andersen, A. Deutsch, A new mechanism for collective migration in Myxococcus xanthus. J. Stat. Phys. 128, 269–286 (2007).
R. Yu, D. Kaiser, Gliding motility and polarized slime secretion. Mol. Microbiol. 63, 454–467 (2007).
R. M. H. Merks, S. V. Brodsky, M. S. Goligorksy, S. A. Newman, J. A. Glazier, Cell elongation is key to in silico replication of in vitro vasculogenesis and subsequent remodeling. Dev. Biol. 289, 44–54 (2006).
Team R, R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2014).
R Studio Team, RStudio: Integrated development for R. (R Studio Inc, 2015).
H. Wickham, Ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).