Myxococcus xanthus; evolutionary-developmental biology; morphogenesis; multicellularity; systems biology; Body Patterning; Morphogenesis; Myxococcus xanthus/growth & development; Biological Evolution; Ecology, Evolution, Behavior and Systematics; Molecular Medicine; Animal Science and Zoology; Genetics; Developmental Biology
Abstract :
[en] Development and evolution are dynamical processes under the continuous control of organismic and environmental factors. Generic physical processes, associated with biological materials and certain genes or molecules, provide a morphological template for the evolution and development of organism forms. Generic dynamical behaviors, associated with recurring network motifs, provide a temporal template for the regulation and coordination of biological processes. The role of generic physical processes and their associated molecules in development is the topic of the dynamical patterning module (DPM) framework. The role of generic dynamical behaviors in biological regulation is studied via the identification of the associated network motifs (NMs). We propose a joint DPM-NM perspective on the emergence and regulation of multicellularity focusing on a multicellular aggregative bacterium, Myxococcus xanthus. Understanding M. xanthus development as a dynamical process embedded in a physical substrate provides novel insights into the interaction between developmental regulatory networks and generic physical processes in the evolutionary transition to multicellularity.
Disciplines :
Microbiology
Author, co-author :
Guzmán-Herrera, Alejandra ; Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico ; MRC Laboratory for Molecular Cell Biology, University College London, London, UK
Arias Del Angel, Juan A; Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico ; Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico ; Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
Rivera-Yoshida, Natsuko; Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
Benítez, Mariana ; Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico ; Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
Franci, Alessio ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Brain-Inspired Computing ; Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
Language :
English
Title :
Dynamical patterning modules and network motifs as joint determinants of development: Lessons from an aggregative bacterium.
Publication date :
April 2021
Journal title :
Journal of Experimental Zoology. Part B, Molecular and Developmental Evolution
CONACYT - Consejo Nacional de Ciencia y Tecnología UNAM - Universidad Nacional Autónoma de México
Funding text :
During the peer review process, Juan A. Arias Del Angel, our dear friend and coauthor, passed away. He was intimately involved in the analyses, discussions, and writing of the manuscript. We dedicate this article to his memory. The authors would like to thank Stuart Newman for valuable feedback on the manuscript. A. G. H. is currently a doctoral student at University College London (UCL) and is funded by University College London (UCL) through an Overseas Research Scholarship and a Graduate Research Scholarship; and by Consejo Nacional de Ciencia y Tecnología (CONACyT; Scholarship Number 471963). J. A. D. A. was a doctoral student from Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM) funded by CONACyT (Scholarship Number 580236). N. R. Y. is funded by Programa de Becas Posdoctorales en la UNAM, A. F. and M. B. are funded by UNAM-DGAPA-PAPIIT, Grant IA105518. A. F. is also funded by CONACyT, Grant A1-S-10610.During the peer review process, Juan A. Arias Del Angel, our dear friend and coauthor, passed away. He was intimately involved in the analyses, discussions, and writing of the manuscript. We dedicate this article to his memory. The authors would like to thank Stuart Newman for valuable feedback on the manuscript. A. G. H. is currently a doctoral student at University College London (UCL) and is funded by University College London (UCL) through an Overseas Research Scholarship and a Graduate Research Scholarship; and by Consejo Nacional de Ciencia y Tecnología (CONACyT; Scholarship Number 471963). J. A. D. A. was a doctoral student from Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM) funded by CONACyT (Scholarship Number 580236). N. R. Y. is funded by Programa de Becas Posdoctorales en la UNAM, A. F. and M. B. are funded by UNAM‐DGAPA‐PAPIIT, Grant IA105518. A. F. is also funded by CONACyT, Grant A1‐S‐10610.
Abedin, M., & King, N. (2008). The premetazoan ancestry of cadherins. Science, 319(5865), 946–948. https://doi.org/10.1126/science.1151084
Alon, U. (2007). Network motifs: Theory and experimental approaches. Nature Reviews Genetics, 8(6), 450–461. https://doi.org/10.1038/nrg2102
Arias Del Angel, J. A., Escalante, A. E., Martínez-Castilla, L. P., & Benítez, M. (2017). An evo-devo perspective on multicellular development of myxobacteria. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 328(1-2), 165–178. https://doi.org/10.1002/jez.b.22727
Arias Del Angel, J. A., Escalante, A. E., Martínez-Castilla, L. P., & Benítez, M. (2018). Cell-fate determination in Myxococcus xanthus development: Network dynamics and novel predictions. Development, Growth & Differentiation, 60(2), 121–129. https://doi.org/10.1111/dgd.12424
Arias Del Angel, J. A., Rivera-Yoshida, N., Escalante, A. E., Martínez-Castilla, L. P., & Benítez, M. (2019). Role of aggregate size, multistability and communication in determining cell fate and patterning in M. xanthus. bioRxiv, https://doi.org/10.1101/627703
Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., … Sherlock, G. (2000). Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nature Genetics, 25(1), 25–29. https://doi.org/10.1038/75556
Bahar, F., Pratt-Szeliga, P. C., Angus, S., Guo, J., & Welch, R. D. (2014). Describing Myxococcus xanthus aggregation using Ostwald ripening equations for thin liquid films. Scientific Reports, 4, 6376. https://doi.org/10.1038/srep06376
Benítez, M., Hernández-Hernández, V., Newman, S. A., & Niklas, K. J. (2018). Dynamical patterning modules, biogeneric materials, and the evolution of multicellular plants. Frontiers in Plant Science, 9, 871. https://doi.org/10.3389/fpls.2018.00871
Bonner, J. (2000). First signals: The evolution of multicellular development. Princeton, NJ: Princeton University Press.
Bonner, J. (2016). Foreword: The evolution of multicellularity. In K. Niklas & S. Newman (Eds.), Multicellularity: Origins and evolution. Cambridge, MA: The MIT Press.
Bretl, D. J., & Kirby, J. R. (2016). Molecular mechanisms of signaling in Myxococcus xanthus development. Journal of Molecular Biology, 428(19), 3805–3830. https://doi.org/10.1016/j.jmb.2016.07.008
Caberoy, N. B., Welch, R. D., Jakobsen, J. S., Slater, S. C., & Garza, A. G. (2003). Global mutational analysis of NtrC-like activators in Myxococcus xanthus: Identifying activator mutants defective for motility and fruiting body development. Journal of Bacteriology, 185(20), 6083–6094. https://doi.org/10.1128/jb.185.20.6083-6094.2003
Crawford, E. W., & Shimkets, L. J. (2000). The stringent response in Myxococcus xanthus is regulated by SocE and the CsgA C-signaling protein. Genes & Development, 14(4), 483–492.
Daley, W. P., Peters, S. B., & Larsen, M. (2008). Extracellular matrix dynamics in development and regenerative medicine. Journal of Cell Science, 121, 255–264. https://doi.org/10.1242/jcs.006064
Davidson, E., & Levin, M. (2005). Gene regulatory networks. Proceedings of the National Academy of Sciences, 102(14), 4935. https://doi.org/10.1073/pnas.0502024102
del Campo, J., Sieracki, M. E., Molestina, R., Keeling, P., Massana, R., & Ruiz-Trillo, I. (2014). The others: Our biased perspective of eukaryotic genomes. Trends in Ecology & Evolution, 29(5), 252–259. https://doi.org/10.1016/j.tree.2014.03.006
Del Vecchio, D., & Murray, R. M. (2015). Biomolecular feedback systems. Princeton, NJ: Princeton University Press.
Elowitz, M. B., & Leibler, S. (2000). A synthetic oscillatory network of transcriptional regulators. Nature, 403(6767), 335–338.
Escalante, A. E., Inouye, S., & Travisano, M. (2012). A spectrum of pleiotropic consequences in development due to changes in a regulatory pathway. PLOS One, 7(8):e43413. https://doi.org/10.1371/journal.pone.0043413
Ferrell, J. E., & Machleder, E. M. (1998). The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes. Science, 280(5365), 895–898. https://doi.org/10.1126/science.280.5365.895
Franci, A., Drion, G., & Sepulchre, R. (2018). Robust and tunable bursting requires slow positive feedback. Journal of Neurophysiology, 119(3), 1222–1234. https://doi.org/10.1152/jn.00804.2017
Gardner, T. S., Cantor, C. R., & Collins, J. J. (2000). Construction of a genetic toggle switch in Escherichia coli. Nature, 403(6767), 339–342.
Garza, A. G., Harris, B. Z., Greenberg, B. M., & Singer, M. (2000). Control of asgE expression during growth and development of Myxococcus xanthus. Journal of Bacteriology, 182(23), 6622–6629. https://doi.org/10.1128/jb.182.23.6622-6629.2000
Giglio, K. M., Zhu, C., Klunder, C., Kummer, S., & Garza, A. G. (2015). The enhancer binding protein Nla6 regulates developmental genes that are important for Myxococcus xanthus sporulation. Journal of Bacteriology, 197(7), 1276–1287. https://doi.org/10.1128/JB.02408-14
Glass, D. S., & Riedel-Kruse, I. H. (2018). A synthetic bacterial cell-cell adhesion toolbox for programming multicellular morphologies and patterns. Cell, 174(3), 649–658. https://doi.org/10.1016/j.cell.2018.06.041
Green, J. B., & Sharpe, J. (2015). Positional information and reaction-diffusion: Two big ideas in developmental biology combine. Development, 142(7), 1203–1211. https://doi.org/10.1242/dev.114991
Gronewold, T. M., & Kaiser, D. (2001). The act operon controls the level and time of C-signal production for Myxococcus xanthus development. Molecular Microbiology, 40(3), 744–756. https://doi.org/10.1046/j.1365-2958.2001.02428.x
Grosberg, R. K., & Strathmann, R. R. (2007). The evolution of multicellularity: A minor major transition? Annual Review of Ecology, Evolution, and Systematics, 38, 621–654. https://doi.org/10.1146/annurev.ecolsys.36.102403.114735
Hanlon, W. A., Inouye, M., & Inouye, S. (1997). Pkn9, a Ser/Thr protein kinase involved in the development of Myxococcus xanthus. Molecular Microbiology, 23(3), 459–471.
Hardin, P. E., Hall, J. C., & Rosbash, M. (1990). Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature, 343(6258), 536–540. https://doi.org/10.1038/343536a0
Hernández-Hernández, V., Barrio, R. A., Benítez, M., Nakayama, N., Romero-Arias, J. R., & Villarreal, C. (2018). A physico-genetic module for the polarisation of auxin efflux carriers PIN-FORMED (PIN). Physical Biology, 15(3):036002. https://doi.org/10.1088/1478-3975/aaac99
Hernández-Hernández, V., Niklas, K. J., Newman, S. A., & Benítez, M. (2012). Dynamical patterning modules in plant development and evolution. International Journal of Developmental Biology, 56, 661–674. https://doi.org/10.1387/ijdb.120027mb
Higgs, P. I., Hartzell, P. L., Holkenbrink, C., & Hoiczyk, E. (2014). Myxococcus xanthus vegetative and developmental cell heterogeneity. In Z. Yang, P. I. Higgs, & (Eds.), Myxobacteria: Genomics, cellular and molecular biology, Norfolk, U.K.: Caister Academic Press.
Igoshin, O. A., Goldbeter, A., Kaiser, D., & Oster, G. (2004). A biochemical oscillator explains several aspects of Myxococcus xanthus behavior during development. Proceedings of the National Academy of Sciences, 101(44), 15760–15765. https://doi.org/10.1073/pnas.0407111101
Igoshin, O. A., Welch, R., Kaiser, D., & Oster, G. (2004). Waves and aggregation patterns in myxobacteria. Proceedings of the National Academy of Sciences, 101(12), 4256–4261. https://doi.org/10.1073/pnas.0400704101
Izhikevich, E. M. (2007). Dynamical systems in neuroscience. Cambridge, MA: MIT Press.
Izhikevich, E. M., & FitzHugh, R. (2006). FitzHugh-Nagumo model. Scholarpedia, 1(9), 1349. https://doi.org/10.4249/scholarpedia.1349
Jacobsen, M. D., Weil, M., & Raff, M. C. (1996). Role of Ced-3/ICE-family proteases in staurosporine-induced programmed cell death. Journal of Cell Biology, 133(5), 1041–1051.
Jacobson, M. D., Weil, M., & Raff, M. C. (1997). Programmed cell death in animal development. Cell, 88(3), 347–354. https://doi.org/10.1016/S0092-8674(00)81873-5
Jiménez, A., Cotterell, J., Munteanu, A., & Sharpe, J. (2017). A spectrum of modularity in multi-functional gene circuits. Molecular Systems Biology, 13(4), 925. https://doi.org/10.15252/msb.20167347
Kroos, L. (2007). The Bacillus and Myxococcus developmental networks and their transcriptional regulators. Annual Review of Genetics, 41, 13–39. https://doi.org/10.1146/annurev.genet.41.110306.130400
Kuspa, A., Plamann, L., & Kaiser, D. (1992). A-signalling and the cell density requirement for Myxococcus xanthus development. Journal of Bacteriology, 174(22), 7360–7369. https://doi.org/10.1128/jb.174.22.7360-7369.1992
Lee, B., Holkenbrink, C., Treuner-Lange, A., & Higgs, P. I. (2012). Myxococcus xanthus developmental cell fate production: Heterogeneous accumulation of developmental regulatory proteins and reexamination of the role of MazF in developmental lysis. Journal of Bacteriology, 194(12), 3058–3068. https://doi.org/10.1128/JB.06756-11
Lobedanz, S., & Søgaard-Andersen, L. (2003). Identification of the C-signal, a contact-dependent morphogen coordinating multiple developmental responses in Myxococcus xanthus. Genes & Development, 17(17), 2151–2161. https://doi.org/10.1101/gad.274203
MacArthur, B. D., Ma'ayan, A., & Lemischka, I. R. (2009). Systems biology of stem cell fate and cellular reprogramming. Nature Reviews Molecular Cell Biology, 10(10), 672–681. https://doi.org/10.1038/nrm2766
Maynard-Smith, J., & Szathmáry, E. (1995). The major transitions in evolution. Oxford: W.H. Freeman Spektrum.
Milligan, C. E., Prevette, D., Yaginuma, H., Homma, S., Cardwellt, C., Fritz, L. C., … Schwartz, L. M. (1995). Peptide inhibitors of the ICE protease family arrest programmed cell death of motoneurons in vivo and in vitro. Neuron, 15(2), 385–393. https://doi.org/10.1016/0896-6273(95)90042-X
Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., & Alon, U. (2002). Network motifs: Simple building blocks of complex networks. Science, 298(5594), 824–827. https://doi.org/10.1126/science.298.5594.824
Monod, J., & Jacob, F. (1961). General conclusions: Teleonomic mechanisms in cellular metabolism, growth, and differentiation, Cold Spring Harbor Symposia on Quantitative Biology (26, pp. 389–401). New York: Cold Spring Harbor Laboratory Press.
Mouw, J. K., Ou, G., & Weaver, V. M. (2014). Extracellular matrix assembly: A multiscale deconstruction. Nature Reviews Molecular Cell Biology, 15(12), 771–785. https://doi.org/10.1038/nrm3902
Müller, F. D., Schink, C. W., Hoiczyk, E., Cserti, E., & Higgs, P. I. (2012). Spore formation in Myxococcus xanthus is tied to cytoskeleton functions and polysaccharide spore coat deposition. Molecular Microbiology, 83(3), 486–505. https://doi.org/10.1111/j.1365-2958.2011.07944.x
Müller, F. D., Treuner-Lange, A., Heider, J., Huntley, S. M., & Higgs, P. I. (2010). Global transcriptome analysis of spore formation in Myxococcus xanthus reveals a locus necessary for cell differentiation. BMC Genomics, 11, 264. https://doi.org/10.1186/1471-2164-11-264
Nanjundiah, V., Ruiz-Trillo, I., & Kirk, D. (2018). Protists and multiple routes to the evolution of multicellularity. Cells in Evolutionary Biology: Translating Genotypes into Phenotypes―Past, Present, Future, 71. https://doi.org/10.1201/9781315155968
Nariya, H., & Inouye, M. (2008). MazF, an mRNA interferase, mediates programmed cell death during multicellular Myxococcus development. Cell, 132(1), 55–66. https://doi.org/10.1016/j.cell.2007.11.044
Nariya, H., & Inouye, S. (2005). Identification of a protein Ser/Thr kinase cascade that regulates essential transcriptional activators in Myxococcus xanthus development. Molecular Microbiology, 58(2), 367–379. https://doi.org/10.1111/j.1365-2958.2005.04826.x
Nariya, H., & Inouye, S. (2006). A protein Ser/Thr kinase cascade negatively regulates the DNA-binding activity of MrpC, a smaller form of which may be necessary for the Myxococcus xanthus development. Molecular Microbiology, 60(5), 1205–1217. https://doi.org/10.1111/j.1365-2958.2006.05178.x
Newman, S. A., & Bhat, R. (2008). Dynamical patterning modules: Physico-genetic determinants of morphological development and evolution. Physical Biology, 5(1):015008. https://doi.org/10.1088/1478-3975/5/1/015008
Newman, S. A., & Bhat, R. (2009). Dynamical patterning modules: A “pattern language” for development and evolution of multicellular form. International Journal of Developmental Biology, 53(5-6), 693–705. https://doi.org/10.1387/ijdb.072481sn
Ogawa, M., Fujitani, S., Mao, X., Inouye, S., & Komano, T. (1996). FruA, a putative transcription factor essential for the development of Myxococcus xanthus. Molecular Microbiology, 22(4), 757–767. https://doi.org/10.1046/j.1365-2958.1996.d01-1725.x
Perez-Carrasco, R., Barnes, C. P., Schaerli, Y., Isalan, M., Briscoe, J., & Page, K. M. (2018). Combining a toggle switch and a repressilator within the AC-DC circuit generates distinct dynamical behaviors. Cell Systems, 6(4), 521–530. https://doi.org/10.1016/j.cels.2018.02.008
Plamann, L., Kuspa, A., & Kaiser, D. (1992). Proteins that rescue A-signal-defective mutants of Myxococcus xanthus. Journal of Bacteriology, 174(10), 3311–3318. https://doi.org/10.1128/jb.174.10.3311-3318.1992
Pomerening, J. R., Sontag, E. D., & Ferrell, J. E., Jr. (2003). Building a cell cycle oscillator: Hysteresis and bistability in the activation of Cdc2. Nature Cell Biology, 5(4), 346–351. https://doi.org/10.1038/ncb954
Prill, R. J., Iglesias, P. A., & Levchenko, A. (2005). Dynamic properties of network motifs contribute to biological network organization. PLOS Biology, 3(11), e343. https://doi.org/10.1371/journal.pbio.0030343
Prochazka, L., Benenson, Y., & Zandstra, P. W. (2017). Synthetic gene circuits and cellular decision-making in human pluripotent stem cells. Current Opinion in Systems Biology, 5, 93–103. https://doi.org/10.1016/j.coisb.2017.09.003
Rivera-Yoshida, N., Del Angel, J. A. A., & Benitez, M. (2018). Microbial multicellular development: Mechanical forces in action. Current Opinion in Genetics & Development, 51, 37–45. https://doi.org/10.1016/j.gde.2018.05.006
Rivera-Yoshida, N., Arzola, A. V., Arias Del Angel, J. A., Franci, A., Travisano, M., Escalante, A. E., & Benitez, M. (2019). Plastic multicellular development of Myxococcus xanthus: Genotype–environment interactions in a physical gradient. Royal Society Open Science, 6(3):181730. https://doi.org/10.1098/rsos.181730
Sager, B., & Kaiser, D. (1994). Intercellular C-signaling and the traveling waves of Myxococcus. Genes & Development, 8(23), 2793–2804. https://doi.org/10.1101/gad.8.23.2793
Shimkets, L. J., & Rafiee, H. (1990). CsgA, an extracellular protein essential for Myxococcus xanthus development. Journal of Bacteriology, 172(9), 5299–5306. https://doi.org/10.1128/jb.172.9.5299-5306.1990
Singer, M., & Kaiser, D. (1995). Ectopic production of guanosine penta- and tetraphosphate can initiate early developmental gene expression in Myxococcus xanthus. Genes & Development, 9(13), 1633–1644. https://doi.org/10.1101/gad.9.13.1633
Skotheim, J. M., Di Talia, S., Siggia, E. D., & Cross, F. R. (2008). Positive feedback of G1 cyclins ensures coherent cell cycle entry. Nature, 454(7202), 291–296. https://doi.org/10.1038/nature07118
Süel, G. M., Garcia-Ojalvo, J., Liberman, L. M., & Elowitz, M. B. (2006). An excitable gene regulatory circuit induces transient cellular differentiation. Nature, 440(7083), 545–550. https://doi.org/10.1038/nature04588
The Gene Ontology Consortium. (2019). The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Research, 47(D1), D330–D338. https://doi.org/10.1093/nar/gky1055
Theocharis, A. D., Skandalis, S. S., Gialeli, C., & Karamanos, N. K. (2016). Extracellular matrix structure. Advanced Drug Delivery Reviews, 97, 4–27. https://doi.org/10.1016/j.addr.2015.11.001
Thompson, D. W. (1942). On growth and form. Cambridge University Press.
Thöny-Meyer, L., & Kaiser, D. (1993). devRS, an autoregulated and essential genetic locus for fruiting body development in Myxococcus xanthus. Journal of Bacteriology, 175(22), 7450–7462. https://doi.org/10.1128/jb.175.22.7450-7462.1993
Toda, S., Blauch, L. R., Tang, S. K., Morsut, L., & Lim, W. A. (2018). Programming self-organizing multicellular structures with synthetic cell-cell signaling. Science, 361(6398), 156–162. https://doi.org/10.1126/science.aat0271
Tomlin, C. J., & Axelrod, J. D. (2007). Biology by numbers: Mathematical modelling in developmental biology. Nature Reviews Genetics, 8(5), 331–340. https://doi.org/10.1038/nrg2098
Tsai, T. Y. C., Choi, Y. S., Ma, W., Pomerening, J. R., Tang, C., & Ferrell, J. E. (2008). Robust, tunable biological oscillations from interlinked positive and negative feedback loops. Science, 321(5885), 126–129. https://doi.org/10.1126/science.1156951
Turing, A. M. (1952). The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London Series B, 237, 37–72.
Udo, H., Munoz-Dorado, J., Inouye, M., & Inouye, S. (1995). Myxococcus xanthus, a gram-negative bacterium, contains a transmembrane protein serine/threonine kinase that blocks the secretion of beta-lactamase by phosphorylation. Genes & Development, 9(8), 972–983. https://doi.org/10.1101/gad.9.8.972
Ueki, T., & Inouye, S. (2003). Identification of an activator protein required for the induction of fruA, a gene essential for fruiting body development in Myxococcus xanthus. Proceedings of the National Academy of Sciences, 100(15), 8782–8787. https://doi.org/10.1073/pnas.1533026100
Verd, B., Monk, N. A., & Jaeger, J. (2019). Modularity, criticality, and evolvability of a developmental gene regulatory network. eLife, 8, e42832. https://doi.org/10.7554/eLife.42832
Xiong, W., & Ferrell, J. E., Jr. (2003). A positive-feedback-based bistable ‘memory module’ that governs a cell fate decision. Nature, 426(6965), 460–465. https://doi.org/10.1038/nature02089
Yang, Z., & Higgs, P. (2014). Myxobacteria: Genomics, cellular and molecular biology. Norfolk, UK: Caister Academic Press.
Zhang, W., Munoz-Dorado, J., Inouye, M., & Inouye, S. (1992). Identification of a putative eukaryotic-like protein kinase family in the developmental bacterium Myxococcus xanthus. Journal of Bacteriology, 174(16), 5450–5453. https://doi.org/10.1128/jb.174.16.5450-5453.1992
Zhu, J., Zhang, Y. T., Alber, M. S., & Newman, S. A. (2010). Bare bones pattern formation: A core regulatory network in varying geometries reproduces major features of vertebrate limb development and evolution. PLOS One, 5(5):e10892. https://doi.org/10.1371/journal.pone.0010892