Adaptation; Excitability; Homeostasis; Neural circuits; Neuromodulation; Robustness; Instrumentation; Control and Optimization
Abstract :
[en] This tutorial provides an introduction to the topic of neuromodulation as an important control paradigm for natural and artificial neuronal networks. We review how neuromodulation modulates excitability, and how neuromodulation interacts with homeostasis. We stress how modulating nodal excitability provides a robust and versatile control principle to dynamically reconfigure the connectivity of rhythmic circuits and to shape the spatio-temporal synchrony of large populations.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Sepulchre, Rodolphe; Control Group, University of Cambridge, Cambridge, United Kingdom
O'Leary, Timothy; Control Group, University of Cambridge, Cambridge, United Kingdom
Drion, Guillaume ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Systèmes et modélisation
Franci, Alessio ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Brain-Inspired Computing ; Science Faculty, National Autonomous University of Mexico, Coyoacàn, D.F., Mexico
Language :
English
Title :
Control by neuromodulation: A tutorial
Publication date :
June 2019
Event name :
2019 18th European Control Conference (ECC)
Event place :
Naples, Ita
Event date :
25-06-2019 => 28-06-2019
Audience :
International
Main work title :
2019 18th European Control Conference, ECC 2019
Publisher :
Institute of Electrical and Electronics Engineers Inc.
TO and RS are with the Control Group at the Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, United Kingdom. {timothy.oleary, r.sepulchre}@eng.cam.ac.uk. GD is with the Institut Montefiore, Universite de Liege, 4000 Liege Sart-Tilman, Belgium. AF is with National Autonomous University of Mexico, Science Faculty, Department of Mathematics, Coyoacán, D.F. México. afranci@ciencias.unam.mx The research leading to these results has received funding from the European Research Council under the Advanced ERC Grant Agreement Switchlet n.670645.
E. D. Adrian and Y. Zotterman,. The impulses produced by sensory nerve-endings: Part ii. the response of a single end-organ,. The Journal of physiology, vol. 61, no. 2, pp. 151. 171, 04 1926. [Online]. Available: https: //www. ncbi. nlm. nih. gov/pubmed/16993780
H. Bergman, T. Wichmann, and M. R. DeLong,. Reversal of experimental parkinsonism by lesions of the subthalamic nucleus,. Science, vol. 249, no. 4975, pp. 1436. 1438, 1990.
M. Burrows,. Co-ordinating interneurones of the locust which convey two patterns of motor commands: their connexions with ight motoneurones,. Journal of Experimental Biology, vol. 63, no. 3, pp. 713. 733, 1975.
J. Cannon and P. Miller,. Stable control of ring rate mean and variance by dual homeostatic mechanisms,. The Journal of Mathematical Neuroscience, vol. 7, no. 1, p. 1, 2017.
J. A. Connor and C. F. Stevens,. Prediction of repetitive ring behaviour from voltage clamp data on an isolated neurone soma,. J Physiol, vol. 213, no. 1, pp. 31. 53, 1971.
H. Dale,. Pharmacology and nerve-endings,. 1935.
H. H. Dale, W. Feldberg, and M. Vogt,. Release of acetylcholine at voluntary motor nerve endings,. The Journal of physiology, vol. 86, no. 4, pp. 353. 380, 1936.
N. S. Desai, L. C. Rutherford, and G. G. Turrigiano,. Plasticity in the intrinsic excitability of cortical pyramidal neurons,. Nature neuroscience, vol. 2, no. 6, p. 515, 1999.
P. S. Dickinson and E. Marder,. Peptidergic modulation of a multioscillator system in the lobster. i. activation of the cardiac sac motor pattern by the neuropeptides proctolin and red pigment-concentrating hormone,. Journal of neurophysiology, vol. 61, no. 4, pp. 833. 844, 1989.
G. Drion,. Regulation of excitability, pacemaking and bursting: Insights from dopamine neuron electrophysiology. Ph. D. dissertation, University of Lifiege, Belgium, 2013.
G. Drion, J. Dethier, A. Franci, and R. Sepulchre,. Switchable slow cellular conductances determine robustness and tunability of network states,. PLoS Comput Biol, vol. 14, no. 4, p. e1006125, 2018.
G. Drion, A. Franci, and R. Dethier, J. and Sepulchre,. Dynamic input conductances shape neuronal spiking,. eneuro, vol. 2, no. 1, 2015.
G. Drion, A. Franci, and R. Sepulchre,. Cellular switches orchestrate rhythmic circuits,. Biological Cybernetics, vol. ?, no. ?, p. ?, 2018.
G. Drion, L. Massotte, R. Sepulchre, and V. Seutin,. How modeling can reconcile apparently discrepant experimental results: the case of pacemaking in dopaminergic neurons,. PLoS Comput Biol, vol. 7, no. 5, pp. e1 002 050. e1 002 050, 2011.
G. Drion, T. O'Leary, and E. Marder,. Ion channel degeneracy enables robust and tunable neuronal ring rates,. Proceedings of the National Academy of Sciences, vol. 112, no. 38, pp. E5361. E5370, 2015. [Online]. Available: http: //www. pnas. org/content/112/38/E5361
P. Fatt and B. Katz,. An analysis of the end-plate potential recorded with an intra-cellular electrode,. The Journal of physiology, vol. 115, no. 3, pp. 320. 370, 1951.
R. FitzHugh,. Impulses and physiological states in theoretical models of nerve membrane,. Biophysical journal, vol. 1, no. 6, p. 445, 1961.
R. E. Flamm and R. M. Harris-Warrick,. Aminergic modulation in lobster stomatogastric ganglion. i. effects on motor pattern and activity of neurons within the pyloric circuit,. Journal of Neurophysiology, vol. 55, no. 5, pp. 847. 865, 1986.
A. Franci, G. Drion, and R. Sepulchre,. An organizing center in a planar model of neuronal excitability,. SIAM Journal on Applied Dynamical Systems, vol. 11, no. 4, pp. 1698. 1722, 2012.
Modeling the modulation of neuronal bursting: a singularity theory approach,. SIAM Journal on Applied Dynamical Systems, vol. 13, no. 2, pp. 798. 829, 2014.
Robust and tunable bursting requires slow positive feedback,. Journal of neurophysiology, vol. 119, no. 3, pp. 1222. 1234, 2017.
P. A. Getting,. Mechanisms of pattern generation underlying swimming in tritonia. i. neuronal network formed by monosynaptic connections. Journal of neurophysiology, vol. 46, no. 1, pp. 65. 79, 1981.
M. S. Goldman, J. Golowasch, E. Marder, and L. F. Abbott,. Global structure, robustness, and modulation of neuronal models,. Journal of Neuroscience, vol. 21, no. 14, pp. 5229. 5238, 2001. [Online]. Available: http: //www. jneurosci. org/content/21/14/5229
J. Golowasch, L. Abbott, and E. Marder,. Activity-dependent regulation of potassium currents in an identified neuron of the stomatogastric ganglion of the crab cancer borealis,. Journal of Neuroscience, vol. 19, no. 20, pp. RC33. RC33, 1999.
I. Gordon and P. Whelan,. Monoaminergic control of cauda-equinaevoked locomotion in the neonatal mouse spinal cord,. J Neurophys-iol., vol. 96, no. 6, pp. 3122. 3129, 2006.
R. Harris-Warrick and A. Cohen,. Serotonin modulates the central pattern generator for locomotion in the isolated lamprey spinal cord,. J Exp Biol., vol. 116, no. 1, pp. 27. 46, 1985.
R. M. Harris-Warrick and E. Kravitz,. Cellular mechanisms for modulation of posture by octopamine and serotonin in the lobster,. Journal of Neuroscience, vol. 4, no. 8, pp. 1976. 1993, 1984.
A. L. Hodgkin,. The local electric changes associated with repetitive action in a non-medullated axon,. The Journal of physiology, vol. 107, no. 2, pp. 165. 181, 03 1948. [Online]. Available: https: //www. ncbi. nlm. nih. gov/pubmed/16991796
A. L. Hodgkin and A. F. Huxley,. A quantitative description of membrane current and its application to conduction and excitation in nerve,. The Journal of physiology, vol. 117, no. 4, pp. 500. 544, 1952.
T. Hökfelt, O. Johansson, A. Ljungdahl, J. M. Lundberg, and M. Schultzberg,. Peptidergic neurones,. Nature, vol. 284, no. 5756, p. 515, 1980.
S. L. Hooper and E. Marder,. Modulation of a central pattern generator by two neuropeptides, proctolin and fmrfamide. Brain research, vol. 305, no. 1, pp. 186. 191, 1984.
Modulation of the lobster pyloric rhythm by the peptide proctolin,. Journal of Neuroscience, vol. 7, no. 7, pp. 2097. 2112, 1987.
J. J. Hopfield,. Neurons with graded response have collective computational properties like those of two-state neurons,. Proceedings of the National Academy of Sciences, vol. 81, pp. 3088. 92, 1984.
L. Jordan and U. Slawinska, Modulation of rhythmic movement: Control of coordination, ser. Progress in Brain Research. Elsevier, 2011, vol. 188, pp. 181. 195.
L. K. Kaczmarek and I. B. Levitan, Neuromodulation: The Biochemi-cal Control of Neuronal Excitability. Oxford university press, 1986.
W. Kristan and R. L. Calabrese,. Rhythmic swimming activity in neurones of the isolated nerve cord of the leech,. Journal of Experimental Biology, vol. 65, no. 3, pp. 643. 668, 1976.
A. Kuhn, D. Williams, A. Kupsch, P. Limousin, M. Hariz, G. Schneider, K. Yarrow, and P. Brown,. Event-related beta desynchronization in human subthalamic nucleus correlates with motor performance. Brain, vol. 137, pp. 735. 746, 2004.
S.-H. Lee and Y. Dan,. Neuromodulation of brain states,. Neuron, vol. 76, no. 1, pp. 209. 222, 2012.
G. LeMasson, E. Marder, and L. Abbott,. Activity-dependent regulation of conductances in model neurons,. Science, vol. 259, no. 5103, pp. 1915. 1917, 1993.
I. Levitan,. Modulation of neuronal activity by peptides and neurotransmitters: possible role of cyclic nucleotides. Journal de physiolo-gie, vol. 74, no. 5, p. 521, 1978.
J. Liu, T. Akay, P. Hedlund, K. Pearson, and L. Jordan,. Spinal 5-ht7 receptors are critical for alternating activity during locomotion: in vitro neonatal and in vivo adult studies using 5-ht7 receptor knockout mice,. J Neurophysiol., vol. 102, no. 1, pp. 337. 348, 2009.
Z. Liu, J. Golowasch, E. Marder, and L. Abbott,. A model neuron with activity-dependent conductances regulated by multiple calcium sensors,. Journal of Neuroscience, vol. 18, no. 7, pp. 2309. 2320, 1998.
K. Lucas,. On the gradation of activity in a skeletal muscle--bre,. The Journal of physiology, vol. 33, no. 2, pp. 125. 137, 1905.
E. Marder,. Neuromodulation of neuronal circuits: back to the future,. Neuron, vol. 76, no. 1, pp. 1. 11, 2012.
E. Marder and D. Bucher,. Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs,. Annu. Rev. Physiol., vol. 69, pp. 291. 316, 2007.
E. Marder and R. L. Calabrese,. Principles of rhythmic motor pattern generation,. Physiol. Rev., vol. 76, pp. 687. 717, 1996.
E. Marder and J.-M. Goaillard,. Variability, compensation and homeostasis in neuron and network function,. Nature Reviews Neuroscience, vol. 7, no. 7, p. 563, 2006.
E. Marder, T. O'Leary, and S. Shruti,. Neuromodulation of circuits with variable parameters: Single neurons and small circuits reveal principles of state-dependent and robust neuromodulation,. Annual Review of Neuroscience, vol. 37, no. 1, pp. 329. 346, 2014, pMID: 25032499. [Online]. Available: https: //doi. org/10. 1146/annurev-neuro-071013-013958
Neuromodulation of circuits with variable parameters: single neurons and small circuits reveal principles of state-dependent and robust neuromodulation,. Annual review of neuroscience, vol. 37, pp. 329. 346, 2014.
D. A. McCormick and T. Bal,. Sleep and arousal: thalamocortical mechanisms,. Annu Rev Neurosci, vol. 20, pp. 185. 215, 1997.
N. M. McCormick DA,. Editorial overview: neuromodulation: tuning the properties of neurons, networks and behavior. Curr Opin Neuro-biol, vol. 29, pp. iv. vii, 2014.
C. Mead, Analog VLSI and neural systems. Reading: Addison-Wesley, 1989, vol. 1.
J. Nagumo, S. Arimoto, and S. Yoshizawa,. An active pulse transmission line simulating nerve axon,. Proceedings of the IRE, vol. 50, no. 10, pp. 2061. 2070, 1962.
T. O'Leary,. Homeostasis, failure of homeostasis and degenerate ion channel regulation,. Current Opinion in Physiology, vol. 2, pp. 129. 138, 2018.
T. O'leary, M. C. van Rossum, and D. J. Wyllie,. Homeostasis of intrinsic excitability in hippocampal neurones: dynamics and mechanism of the response to chronic depolarization,. The Journal of physiology, vol. 588, no. 1, pp. 157. 170, 2010.
T. O'Leary, A. H. Williams, J. S. Caplan, and E. Marder,. Correlations in ion channel expression emerge from homeostatic tuning rules,. Proceedings of the National Academy of Sciences, vol. 110, no. 28, pp. E2645. E2654, 2013.
T. O'Leary, A. H. Williams, A. Franci, and E. Marder,. Cell types, network homeostasis, and pathological compensation from a biologically plausible ion channel expression model,. Neuron, vol. 82, no. 4, pp. 809. 821, 2014.
T. O'Leary and D. J. Wyllie,. Neuronal homeostasis: time for a change?. The Journal of physiology, vol. 589, no. 20, pp. 4811. 4826, 2011.
L. Ribar and R. Sepulchre,. Neuromodulation of neuromorphic circuits,. IEEE Trans Circuits Syst I Regul Pap, in press, 2019.
J. Rodriguez, D. Blitz, and M. Nusbaum,. Convergent rhythm generation from divergent cellular mechanisms,. J Neurosci., vol. 33, no. 46, pp. 18 047. 18 064, 2013.
D. J. Schulz, J.-M. Goaillard, and E. Marder,. Variable channel expression in identified single and electrically coupled neurons in different animals,. Nature neuroscience, vol. 9, no. 3, p. 356, 2006.
D. J. Schulz, J.-M. Goaillard, and E. E. Marder,. Quantitative expression profiling of identified neurons reveals cell-specific constraints on highly variable levels of gene expression,. Proceedings of the National Academy of Sciences, vol. 104, no. 32, pp. 13 187. 13 191, 2007.
A. I. Selverston,. Are central pattern generators understandable?. Behavioral and Brain Sciences, vol. 3, no. 4, pp. 535. 540, 1980.
R. Sepulchre, G. Drion, and A. Franci,. Excitable behaviors,. in Emerging Applications of Control and Systems Theory. Springer-Verlag, 2018, pp. 269. 280.
Control accross scales by positive and negative feedback,. Annual Review of Control, Robotics, and Autonomous Systems, vol. To appear, 2019.
S. Seung, Connectome: How the brain's wiring makes us who we are. HMH, 2012.
S. M. Sherman and R. W. Guillery, Exploring the Thalamus and Its Role in Cortical Function, 2nd ed. MIT Press, 2006.
S. M. Sherman,. Thalamocortical interactions,. Current opinion in neurobiology, vol. 22, no. 4, pp. 575. 579, 2012.
O. Sporns, G. Tononi, and R. Kötter,. The human connectome: a structural description of the human brain,. PLoS computational biology, vol. 1, no. 4, p. e42, 2005.
A. Takeuchi and N. Takeuchi,. On the permeability of end-plate membrane during the action of transmitter,. The Journal of physiology, vol. 154, no. 1, pp. 52. 67, 1960.