[en] In order to investigate the contribution of the physical environment to variation in multicellular development of Myxococcus xanthus, phenotypes developed by different genotypes in a gradient of substrate stiffness conditions were quantitatively characterized. Statistical analysis showed that plastic phenotypes result from the genotype, the substrate conditions and the interaction between them. Also, phenotypes were expressed in two distinguishable scales, the individual and the population levels, and the interaction with the environment showed scale and trait specificity. Overall, our results highlight the constructive role of the physical context in the development of microbial multicellularity, with both ecological and evolutionary implications.
Disciplines :
Microbiology
Author, co-author :
Rivera-Yoshida, Natsuko ; Laboratorio Nacional de Ciencias de la Sostenibilidad (LANCIS), Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico ; Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico ; Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico
Arzola, Alejandro V ; Instituto de Física, Universidad Nacional Autónoma de México, Apdo Postal 20-364, 01000 Cd de México, Mexico
Arias Del Angel, Juan A; Laboratorio Nacional de Ciencias de la Sostenibilidad (LANCIS), Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico ; Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico ; Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico
Franci, Alessio ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Brain-Inspired Computing ; Facultad de Ciencias, Universidad Nacional Autonóma de México, Mexico
Travisano, Michael ; Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, USA
Escalante, Ana E ; Laboratorio Nacional de Ciencias de la Sostenibilidad (LANCIS), Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
Benítez, Mariana ; Laboratorio Nacional de Ciencias de la Sostenibilidad (LANCIS), Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico ; Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
Language :
English
Title :
Plastic multicellular development of Myxococcus xanthus: genotype-environment interactions in a physical gradient.
CONACYT - Consejo Nacional de Ciencia y Tecnología UNAM - National Autonomous University of Mexico
Funding text :
Competing interests. We have no competing interests. Funding. This study is funded by CONACYT (221341), DGAPA-PAPIIT-UNAM (RA105518) and PAPIIT-UNAM (IN111919). Acknowledgements. N.R.-Y. is a doctoral student from Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM) and received fellowship 580236 from CONACYT. Authors thank Marcelo Navarro-Díaz, Karen Carrasco-Espinosa, Alejandra Hernández-Terán, José Antonio Olivares Segura, Jorge Hernández-Cobos, Emilio Mora Van Cauwelaert and members of LANCIS for their support and valuable feedback. We also thank the International Centre for Theoretical Sciences (ICTS) for its support during the program Living Matter (Code: ICTS/Prog-LivingMatter2018/04), at the ICTS. Authors thank two anonymous reviewers for valuable comments and suggestions.
Sultan S. 2015 Organism and environment: ecological development, niche construction, and adaptation. Oxford, UK: Oxford University Press.
Gilbert S, Epel D. 2015 Ecological developmental biology: The environmental regulation of development, health, and evolution. Sunderland, MA: Incorporated Publishers.
Rajakumar R, San Mauro D, Dijkstra, MB, Huang MH, Wheeler DE, Hiou-Tim F, Khila A, Cournoyea M, Abouheif E. 2012 Ancestral developmental potential facilitates parallel evolution in ants. Science 335, 79-82. (doi:10. 1126/science.1211451)
Suzuki Y, Nijhout HF. 2006 Evolution of a polyphenism by genetic accommodation. Science 311, 650-652. (doi:10.1126/science.1118888)
West-Eberhard MJ. 2003 Developmental plasticity and evolution. Oxford, UK: Oxford University Press.
Agrawal AA. 1998 Induced responses to herbivory and increased plant performance. Science 279, 1201-1202. (doi:10.1126/science. 279.5354.1201)
Schlichting CD, Pigliucci M. 1998 Phenotypic evolution: A reaction norm perspective. Sunderland, MA: Sinauer Associates Inc.
Jablonka E, Lamb M. 2014 Evolution in four dimensions, revised edition: genetic, epigenetic, behavioral, and symbolic variation in the history of life. Cambridge, MA: The MIT Press.
Laland KN, Uller T, Feldman MW, Sterelny K, Müller GB, Moczek A, Jablonka E, Odling-Smee J. 2015 The extended evolutionary synthesis: its structure, assumptions and predictions. Proc. R. Soc. B 282, 20151019. (doi:10.1098/rspb.2015.1019)
West-Eberhard MJ. 2005 Developmental plasticity and the origin of species differences. Proc. Natl Acad. Sci. USA 102, 6543-6549. (doi:10.1073/pnas.0501844102)
Love AC, Travisano M. 2013. Microbes modeling ontogeny. Biol. Philos. 28, 161-188. (doi:10. 1007/s10539-013-9363-5)
Newman SA. 2016 Multicellularity, the emergence of animal body plans, and the stabilizing role of the egg, in Multicellularity: origins and evolution (eds KJ Niklas, SA Newman), p. 225. Cambridge, MA: MIT Press.
Persat A et al. 2015 The mechanical world of bacteria. Cell 161, 988-997. (doi:10.1016/j.cell. 2015.05.005)
Rivera-Yoshida N, Arias Del Angel JA, Benítez M. 2018 Microbial multicellular development: mechanical forces in action. Curr. Opin. Genet. Dev. 51, 37-45. (doi:10.1016/J.GDE.2018. 05.006)
Yang Z, Higgs P. 2014 Myxobacteria: genomics, cellular and molecular biology. Norfolk, UK: Caister Academic Press.
Arias Del Angel JA, Escalante AE, Martínez-Castilla LP, Benítez M. 2018 Cell-fate determination in Myxococcus xanthus development: network dynamics and novel predictions. Dev. Growth Differ. 60, 121-129. (doi:10.1111/dgd.12424)
Escalante AE, Inouye S, Travisano M. 2012 A spectrum of pleiotropic consequences in development due to changes in a regulatory pathway. PLoS One 7, e43413. (doi:10.1371/journal.pone.0043413)
Lemon D, Yang X, Srivastava P, Luk Y, Garza A. 2017 Polymertropism of rod-shaped bacteria: movement along aligned polysaccharide fibers. Sci. Rep. 7, 7643. (doi:10.1038/s41598-017-07486-0)
Be'er A, Smith R, Zhang H, Florin E, Payne S, Swinney H. 2009 Paenibacillus dendritiformis bacterial colony growth depends on surfactant but not on bacterial motion. J. Bacteriol. 191, 5758-5764. (doi:10.1128/JB.00660-09)
Guégan C, Garderes J, Pennec G, Gaillard F, Fay F, Linossier I, Herry J, Fontaine M, Réhel K. 2014 Alteration of bacterial adhesion induced by the substrate stiffness. Colloids Surf. B Biointerfaces 114, 193-200. (doi:10.1016/j.colsurfb.2013. 10.010)
Nayar VT, Weiland JD, Nelson CS, Hodge AM. 2012 Elastic and viscoelastic characterization of agar. J. Mech. Behav. Biomed. Mater. 7, 60-68. (doi:10.1016/J.JMBBM.2011.05.027)
Arias Del Angel JA, Escalante AE, Martínez-Castilla LP, Benítez M. 2017 An evo-devo perspective on multicellular development of myxobacteria. J. Exp. Zool. Part B: Mol. Dev. Evol. 328, 165-178. (doi:10.1002/jez.b.22727)
Nariya H, Inouye S. 2006 A protein Ser/Thr kinase cascade negatively regulates the DNA-binding activity of MrpC, a smaller form of which may be necessary for the Myxococcus xanthus development. Mol. Microbiol. 60, 1205-1217. (doi:10.1111/j.1365-2958.2006.05178.x)
Nariya H, Inouye S. 2005 Identification of a protein Ser/Thr kinase cascade that regulates essential transcriptional activators in Myxococcus xanthus development. Mol. Microbiol. 58, 367-379. (doi:10.1111/j.1365-2958.2005. 04826.x)
Nariya H, Inouye S. 2003 An effective sporulation of Myxococcus xanthus requires glycogen consumption via Pkn4-Activated 6-phosphofructokinase. Mol. Microbiol. 49, 517-528. (doi:10.1046/j.1365-2958.2003.03572.x)
Nariya H, Inouye S. 2002 Activation of 6-phosphofructokinase via phosphorylation by Pkn4, a protein Ser/Thr kinase of Myxococcus xanthus. Mol. Microbiol. 46, 1353-1366. (doi:10.1046/j.1365-2958.2002.03251.x)
Schindelin J et al. 2012 Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676-682. (doi:10.1038/nmeth.2019)
Rivera-Yoshida N, Arzola AV, Arias Del Angel JA, Franci A, Travisano M, Escalante AE, Benítez M. 2018 Data from: Plastic multicellular development of Myxococcus xanthus: genotype-environment interactions in a physical gradient. Dryad Digital Repository. (doi:10.5061/dryad.308hs50)
Oksanen J et al. 2018 Package 'vegan' community ecology package. See https://cran. r-project.org/web/packages/vegan/index.html.
Le S, Josse J, Rennes A, Husson F. 2008 FactoMineR: An R package for multivariate analysis. J. Stat. Softw. 25, 1-18.
Team R. 2014 R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
R Studio Team. 2015 RStudio: integrated development for R. Boston, MA: R Studio, Inc.
Wickham H. 2016 Ggplot2: elegant graphics for data analysis. New York, NY: Springer.
Shi W, Zusman DR. 1993 The two motility systems of Myxococcus xanthus show different selective advantages on various surfaces. Proc. Natl Acad. Sci. USA 90, 3378-3382. (doi:10. 1073/pnas.90.8.3378)
Bahar F, Pratt-Szeliga P, Angus S, Guo J, Welch R. 2014 Describing Myxococcus xanthus aggregation using Ostwald ripening equations for thin liquid films. Sci. Rep. 4, 6376. (doi: 10. 1038/srep06376)
Andac T, Weigmann P, Velu SK, Pinçe E, Volpe G, Volpe G, Callegari A. 2019. Active matter alters the growth dynamics of coffee rings. Soft Matter 15, 1488-1496. (doi:10.1039/C8SM01350K)
Schmalhausen II. 1949 Factors of evolution: The theory of stabilizing selection. Chicago, IL: University of Chicago Press.