Ion Channels; Action Potentials; Animals; Computer Simulation; Homeostasis/physiology; Humans; Ion Channels/metabolism; Nerve Net/physiology; Neurons/classification; Neurons/pathology; Neurons/physiology; Models, Biological; Neuroscience (all); General Neuroscience
Abstract :
[en] How do neurons develop, control, and maintain their electrical signaling properties in spite of ongoing protein turnover and perturbations to activity? From generic assumptions about the molecular biology underlying channel expression, we derive a simple model and show how it encodes an "activity set point" in single neurons. The model generates diverse self-regulating cell types and relates correlations in conductance expression observed in vivo to underlying channel expression rates. Synaptic as well as intrinsic conductances can be regulated to make a self-assembling central pattern generator network; thus, network-level homeostasis can emerge from cell-autonomous regulation rules. Finally, we demonstrate that the outcome of homeostatic regulation depends on the complement of ion channels expressed in cells: in some cases, loss of specific ion channels can be compensated; in others, the homeostatic mechanism itself causes pathological loss of function.
Disciplines :
Neurology
Author, co-author :
O'Leary, Timothy; Volen Center and Biology Department, Brandeis University, Waltham, MA 02454, USA. Electronic address: toleary@brandeis.edu
Williams, Alex H; Volen Center and Biology Department, Brandeis University, Waltham, MA 02454, USA
Franci, Alessio ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Systèmes et modélisation
Marder, Eve; Volen Center and Biology Department, Brandeis University, Waltham, MA 02454, USA. Electronic address: marder@brandeis.edu
Language :
English
Title :
Cell types, network homeostasis, and pathological compensation from a biologically plausible ion channel expression model.
Abbott L., LeMasson G. Analysis of neuron models with dynamically regulated conductances. Neural. Comput. 1993, 5:823-842.
Alon U. An Introduction to Systems Biology: Design Principles of Biological Circuits 2007, Chapman & Hall/CRC, Boca Raton.
Alon U., Surette M.G., Barkai N., Leibler S. Robustness in bacterial chemotaxis. Nature 1999, 397:168-171.
Amendola J., Woodhouse A., Martin-Eauclaire M.F., Goaillard J.M. Ca2+/cAMP-sensitive covariation of I(A) and I(H) voltage dependences tunes rebound firing in dopaminergic neurons. J.Neurosci. 2012, 32:2166-2181.
Baccaglini P.I., Spitzer N.C. Developmental changes in the inward current of the action potential of Rohon-Beard neurones. J.Physiol. 1977, 271:93-117.
Baines R.A., Uhler J.P., Thompson A., Sweeney S.T., Bate M. Altered electrical properties in Drosophila neurons developing without synaptic transmission. J.Neurosci. 2001, 21:1523-1531.
Barish M.E. Intracellular calcium regulation of channel and receptor expression in the plasmalemma: potential sites of sensitivity along the pathways linking transcription, translation, and insertion. J.Neurobiol. 1998, 37:146-157.
Bhalla U.S., Bower J.M. Exploring parameter space in detailed single neuron models: simulations of the mitral and granule cells of the olfactory bulb. J.Neurophysiol. 1993, 69:1948-1965.
Brickley S.G., Revilla V., Cull-Candy S.G., Wisden W., Farrant M. Adaptive regulation of neuronal excitability by a voltage-independent potassium conductance. Nature 2001, 409:88-92.
Davis G.W. Homeostatic control of neural activity: from phenomenology to molecular design. Annu. Rev. Neurosci. 2006, 29:307-323.
Desai N.S. Homeostatic plasticity in the CNS: synaptic and intrinsic forms. J.Physiol. Paris 2003, 97:391-402.
Desai N.S., Rutherford L.C., Turrigiano G.G. Plasticity in the intrinsic excitability of cortical pyramidal neurons. Nat. Neurosci. 1999, 2:515-520.
Drengstig T., Ueda H.R., Ruoff P. Predicting perfect adaptation motifs in reaction kinetic networks. J.Phys. Chem. B 2008, 112:16752-16758.
Drion G., Franci A., Seutin V., Sepulchre R. A novel phase portrait for neuronal excitability. PLoS ONE 2012, 7:e41806.
Franci A., Drion G., Sepulchre R. An organizing center in a planar model of neuronal excitability. SIAM J. Appl. Dyn. Syst. 2012, 11:1698-1722.
Franci A., Drion G., Seutin V., Sepulchre R. A balance equation determines a switch in neuronal excitability. PLoS Comput. Biol. 2013, 9:e1003040.
Goldman M.S., Golowasch J., Marder E., Abbott L.F. Global structure, robustness, and modulation of neuronal models. J.Neurosci. 2001, 21:5229-5238.
Golowasch J., Abbott L.F., Marder E. Activity-dependent regulation of potassium currents in an identified neuron of the stomatogastric ganglion of the crab Cancer borealis. J.Neurosci. 1999, 19:RC33.
Golowasch J., Casey M., Abbott L.F., Marder E. Network stability from activity-dependent regulation of neuronal conductances. Neural Comput. 1999, 11:1079-1096.
Golowasch J., Goldman M.S., Abbott L.F., Marder E. Failure of averaging in the construction of a conductance-based neuron model. J.Neurophysiol. 2002, 87:1129-1131.
Günay C., Prinz A.A. Model calcium sensors for network homeostasis: sensor and readout parameter analysis from a database of model neuronal networks. J.Neurosci. 2010, 30:1686-1698.
Hengen K.B., Lambo M.E., Van Hooser S.D., Katz D.B., Turrigiano G.G. Firing rate homeostasis in visual cortex of freely behaving rodents. Neuron 2013, 80:335-342.
Kim T.K., Hemberg M., Gray J.M., Costa A.M., Bear D.M., Wu J., Harmin D.A., Laptewicz M., Barbara-Haley K., Kuersten S., et al. Widespread transcription at neuronal activity-regulated enhancers. Nature 2010, 465:182-187.
LeMasson G., Marder E., Abbott L.F. Activity-dependent regulation of conductances in model neurons. Science 1993, 259:1915-1917.
Lin W.H., Günay C., Marley R., Prinz A.A., Baines R.A. Activity-dependent alternative splicing increases persistent sodium current and promotes seizure. J.Neurosci. 2012, 32:7267-7277.
Lipscombe D., Allen S.E., Toro C.P. Control of neuronal voltage-gated calcium ion channels from RNA to protein. Trends Neurosci. 2013, 36:598-609.
Liss B., Franz O., Sewing S., Bruns R., Neuhoff H., Roeper J. Tuning pacemaker frequency of individual dopaminergic neurons by Kv4.3L and KChip3.1 transcription. EMBO J. 2001, 20:5715-5724.
Liu Z., Golowasch J., Marder E., Abbott L.F. A model neuron with activity-dependent conductances regulated by multiple calcium sensors. J.Neurosci. 1998, 18:2309-2320.
Maffei A., Fontanini A. Network homeostasis: a matter of coordination. Curr. Opin. Neurobiol. 2009, 19:168-173.
Marder E. Variability, compensation, and modulation in neurons and circuits. Proc. Natl. Acad. Sci. USA 2011, 108(Suppl 3):15542-15548.
Marder E., Bucher D. Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs. Annu. Rev. Physiol. 2007, 69:291-316.
Marder E., Eisen J.S. Transmitter identification of pyloric neurons: electrically coupled neurons use different transmitters. J.Neurophysiol. 1984, 51:1345-1361.
Marder E., Goaillard J.M. Variability, compensation and homeostasis in neuron and network function. Nat. Rev. Neurosci. 2006, 7:563-574.
Marder E., Prinz A.A. Modeling stability in neuron and network function: the role of activity in homeostasis. Bioessays 2002, 24:1145-1154.
Mease R.A., Famulare M., Gjorgjieva J., Moody W.J., Fairhall A.L. Emergence of adaptive computation by single neurons in the developing cortex. J.Neurosci. 2013, 33:12154-12170.
Mee C.J., Pym E.C., Moffat K.G., Baines R.A. Regulation of neuronal excitability through pumilio-dependent control of a sodium channel gene. J.Neurosci. 2004, 24:8695-8703.
Mermelstein P.G., Bito H., Deisseroth K., Tsien R.W. Critical dependence of cAMP response element-binding protein phosphorylation on L-type calcium channels supports a selective response to EPSPs in preference to action potentials. J.Neurosci. 2000, 20:266-273.
Mihalas A.B., Araki Y., Huganir R.L., Meffert M.K. Opposing action of nuclear factor κB and Polo-like kinases determines a homeostatic end point for excitatory synaptic adaptation. J.Neurosci. 2013, 33:16490-16501.
Moody W.J. Control of spontaneous activity during development. J.Neurobiol. 1998, 37:97-109.
Moody W.J., Bosma M.M. Ion channel development, spontaneous activity, and activity-dependent development in nerve and muscle cells. Physiol. Rev. 2005, 85:883-941.
Morohashi M., Winn A.E., Borisuk M.T., Bolouri H., Doyle J., Kitano H. Robustness as a measure of plausibility in models of biochemical networks. J.Theor. Biol. 2002, 216:19-30.
O'Donovan M.J. The origin of spontaneous activity in developing networks of the vertebrate nervous system. Curr. Opin. Neurobiol. 1999, 9:94-104.
O'Leary T., Wyllie D.J.A. Neuronal homeostasis: time for a change?. J.Physiol. 2011, 589:4811-4826.
O'Leary T., van Rossum M.C.W., Wyllie D.J.A. Homeostasis of intrinsic excitability in hippocampal neurones: dynamics and mechanism of the response to chronic depolarization. J.Physiol. 2010, 588:157-170.
O'Leary T., Williams A.H., Caplan J.S., Marder E. Correlations inion channel expression emerge from homeostatic tuning rules. Proc. Natl. Acad. Sci. USA 2013, 110:E2645-E2654.
Olypher A.V., Calabrese R.L. Using constraints on neuronal activity to reveal compensatory changes in neuronal parameters. J.Neurophysiol. 2007, 98:3749-3758.
Olypher A.V., Prinz A.A. Geometry and dynamics of activity-dependent homeostatic regulation in neurons. J.Comput. Neurosci. 2010, 28:361-374.
Prinz A.A., Billimoria C.P., Marder E. Alternative to hand-tuning conductance-based models: construction and analysis of databases of model neurons. J.Neurophysiol. 2003, 90:3998-4015.
Prinz A.A., Bucher D., Marder E. Similar network activity from disparate circuit parameters. Nat. Neurosci. 2004, 7:1345-1352.
Ramocki M.B., Zoghbi H.Y. Failure of neuronal homeostasis results in common neuropsychiatric phenotypes. Nature 2008, 455:912-918.
Rinzel J., Ermentrout G.B. Analysis of neural excitability and oscillations. Methods in Neuron Modeling 1989, MIT Press, Cambridge. C. Koch, I. Segev (Eds.).
Schulz D.J., Goaillard J.M., Marder E. Variable channel expression in identified single and electrically coupled neurons in different animals. Nat. Neurosci. 2006, 9:356-362.
Schulz D.J., Goaillard J.M., Marder E.E. Quantitative expression profiling of identified neurons reveals cell-specific constraints on highly variable levels of gene expression. Proc. Natl. Acad. Sci. USA 2007, 104:13187-13191.
Seeburg P.H., Hartner J. Regulation of ion channel/neurotransmitter receptor function by RNA editing. Curr. Opin. Neurobiol. 2003, 13:279-283.
Sobie E.A. Parameter sensitivity analysis in electrophysiological models using multivariable regression. Biophys. J. 2009, 96:1264-1274.
Soto-Treviño C., Thoroughman K.A., Marder E., Abbott L.F. Activity-dependent modification of inhibitory synapses in models of rhythmic neural networks. Nat. Neurosci. 2001, 4:297-303.
Spitzer N.C. A developmental handshake: neuronal control of ionic currents and their control of neuronal differentiation. J.Neurobiol. 1991, 22:659-673.
Spitzer N.C., Kingston P.A., Manning T.J., Conklin M.W. Outside and in: development of neuronal excitability. Curr. Opin. Neurobiol. 2002, 12:315-323.
Stelling J., Sauer U., Szallasi Z., Doyle F.J., Doyle J. Robustness of cellular functions. Cell 2004, 118:675-685.
Stemmler M., Koch C. How voltage-dependent conductances can adapt to maximize the information encoded by neuronal firing rate. Nat. Neurosci. 1999, 2:521-527.
Swensen A.M., Bean B.P. Robustness of burst firing in dissociated purkinje neurons with acute or long-term reductions in sodium conductance. J.Neurosci. 2005, 25:3509-3520.
Taylor A.L., Hickey T.J., Prinz A.A., Marder E. Structure and visualization of high-dimensional conductance spaces. J.Neurophysiol. 2006, 96:891-905.
Taylor A.L., Goaillard J.M., Marder E. How multiple conductances determine electrophysiological properties in a multicompartment model. J.Neurosci. 2009, 29:5573-5586.
Temporal S., Desai M., Khorkova O., Varghese G., Dai A., Schulz D.J., Golowasch J. Neuromodulation independently determines correlated channel expression and conductance levels in motor neurons of the stomatogastric ganglion. J.Neurophysiol. 2012, 107:718-727.
Thoby-Brisson M., Simmers J. Transition to endogenous bursting after long-term decentralization requires De novo transcription in a critical time window. J.Neurophysiol. 2000, 84:596-599.
Tobin A.E., Cruz-Bermúdez N.D., Marder E., Schulz D.J. Correlations in ion channel mRNA in rhythmically active neurons. PLoS ONE 2009, 4:e6742.
Turrigiano G. Homeostatic signaling: the positive side of negative feedback. Curr. Opin. Neurobiol. 2007, 17:318-324.
Turrigiano G.G., Nelson S.B. Homeostatic plasticity in the developing nervous system. Nat. Rev. Neurosci. 2004, 5:97-107.
Turrigiano G., Abbott L.F., Marder E. Activity-dependent changes in the intrinsic properties of cultured neurons. Science 1994, 264:974-977.
Turrigiano G., LeMasson G., Marder E. Selective regulation of current densities underlies spontaneous changes in the activity of cultured neurons. J.Neurosci. 1995, 15:3640-3652.
van Ooyen A. Using theoretical models to analyse neural development. Nat. Rev. Neurosci. 2011, 12:311-326.
Wang Z. miRNA in the regulation of ion channel/transporter expression. Compr. Physiol. 2013, 3:599-653.
Wheeler D.G., Groth R.D., Ma H., Barrett C.F., Owen S.F., Safa P., Tsien R.W. Ca(V)1 and Ca(V)2 channels engage distinct modes ofCa(2+) signaling to control CREB-dependent gene expression. Cell 2012, 149:1112-1124.
Yi T.M., Huang Y., Simon M.I., Doyle J. Robust perfect adaptation in bacterial chemotaxis through integral feedback control. Proc. Natl. Acad. Sci. USA 2000, 97:4649-4653.
Zhao S., Golowasch J. Ionic current correlations underlie the global tuning of large numbers of neuronal activity attributes. J.Neurosci. 2012, 32:13380-13388.