J.A. Acebrn, L.L. Bonilla, C.J.P. Vicente, F. Ritort, and R. Spigler The Kuramoto model: a simple paradigm for synchronization phenomena Reviews of Modern Physics 77 2005 137 185 (Pubitemid 41490657)
D. Aeyels, and J.A. Rogge Existence of partial entrainment and stability of phase locking behavior of coupled oscillators Progress of Theoretical Physics 112 6 2004 921 942 (Pubitemid 40366573)
A.L. Benabid, P. Pollak, C. Gervason, D. Hoffmann, D.M. Gao, M. Hommel, J.E. Perret, and J. de Rougemont Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus The Lancet 337 1991 403 406
E. Brown, P. Holmes, and J. Moehlis Globally coupled oscillator networks K. Sreenivasan, E. Kaplan, J. Marsden, Perespectives and problems in nonlinear science: a celebratory volume in honor of Larry 2003 Sirovich New York
N. Chopra, and M.W. Spong On exponential synchronization of Kuramoto oscillators IEEE Transactions on Automatic Control 54 2 2009 353 357
D. Cumin, and C. Unsworth Generalising the Kuramoto model for the study of neuronal synchronisation in the brain Physica D 226 2 2007 181 196 (Pubitemid 46185616)
Daniels, B. (2005). Synchronization of globally coupled nonlinear oscillators: the rich behavior of the Kuramoto model. Ohio Wesleyan Physics Dept. Essay, 720. Available online.
Drfler, F.; Bullo, F. (2010). synchronization and transient stability in power networks and non-uniform Kuramoto oscillators. In: Proceedings of the american control conference, Baltimore, Maryland, USA (pp. 930937).
A.L. Fradkov Cybernetical physics. from control of chaos to quantum control Springer: complexity 2007 Springer-Verlag Berlin, Heidelberg
Franci, A.; Chaillet, A.; Pasillas-Lpine, W. (2010a). Existence and robustness of phase-locking in coupled Kuramoto oscillators under mean-filed feedback. Preprint. Available at: http://hal.archives-ouvertes.fr/hal-00526066/.
Franci, A.; Chaillet, A.; Pasillas-Lpine, W. (2010b). Robustness of phase-locking between Kuramoto oscillators to time-varying inputs. In: Proc. 49th. IEEE conf. decision contr. Atlanta, GA, USA (pp. 15871595).
Franci, A.; Chaillet, A.; Bezzaoucha, S. (2011). Toward oscillation inhibition by mean-field feedback in Kuramoto oscillators. In: Proc. IFAC world congress, Milano, Italy, August 2011 (in press).
C. Hammond, R. Ammari, B. Bioulac, and L. Garcia Latest view on the mechanism of action of deep brain stimulation Movement Disorder 23 15 2008 2111 2121
A. Hodgkin, and A. Huxley A quantitative description of membrane current and its application to conduction and excitation in nerve Journal of Physiology 117 1952 500 544
F.C. Hoppensteadt, and E.M. Izhikevich Weakly connected neural networks Applied mathematical sciences Vol. 126 1997 Springer-Verlag New York
A. Isidori Nonlinear control systems II 1999 Springer Verlag London, England
E.M. Izhikevich Dynamical systems in neuroscience: the geometry of excitability and bursting 2007 MIT Press Cambridge, Massachusetts, London, England
A. Jadbabaie, N. Motee, and M. Barahona On the stability of the Kuramoto model of coupled nonlinear oscillators Proceedings of the American Control Conference 2004 4296 4301
H. Khalil Nonlinear systems 3rd ed. 2001 Prentice Hall New York
R. Kumar, A.M. Lozano, E. Sime, and A.E. Lang Long-term follow-up of thalamic deep brain stimulation for essential and Parkinsonian tremor Neurology 61 2003 1601 1604 (Pubitemid 37505587)
Y. Kuramoto Chemical oscillations, waves, and turbulence 1984 Springer Berlin
J. Lopez-Azcarate, M. Tainta, M.C. Rodriguez-Oroz, M. Valencia, R. Gonzalez, J. Guridi, J. Iriarte, J.A. Obeso, J. Artieda, and M. Alegre Coupling between beta and high-frequency activity in the human subthalamic nucleus may be a pathophysiological mechanism in Parkinsons disease Journal of Neuroscience 30 19 2010 6667 6677
A. Lora, and E. Panteley Cascade nonlinear time-varying systems: analysis and design F. Lamnabhi-Lagarrigue, A. Lora, E. Panteley, Advanced topics in control systems theory Lecture notes in control and information sciences 2005 Springer Verlag
Y.L. Maistrenko, O.V. Popovych, and P.A. Tass Desynchronization and chaos in the Kuramoto model Lecture Notes in Physics 671 2005 285 306
Malkin, I. J. (1958). Theory of stability of motion. Tech. rep. US atomic energy commission.
A. Nini, A. Feingold, H. Slovin, and H. Bergman Neurons in the globus pallidus do not show correlated activity in the normal monkey, but phase-locked oscillations appear in the MPTP model of Parkinsonism Journal of Neurophysiology 74 4 1995 1800 1805
R. Olfati-Saber, and R.M. Murray Consensus problems in networks of agents with switching topology and time-delays IEEE Transactions on Automatic Control 49 9 2004 1520 1533
A. Pavlov, N. vañde Wouw, and H. Nijmeijer Uniform output regulation of nonlinear systems: a convergent dynamics approach. systems and controls: foundations and applications 2006 Birkhauser Boston
D. Plenz, and S.T. Kital A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus Nature 400 6745 1999 677 682
O.V. Popovych, C. Hauptmann, and P.A. Tass Desynchronization and decoupling of interacting oscillators by nonlinear delayed feedback International Journal of Bifurcation and Chaos 16 7 2006 1977 1987 (Pubitemid 44370619)
K. Pyragas, O.V. Popovich, and P.A. Tass Controlling synchrony in oscillatory networks with a separate stimulation-registration setup English Premier League 80 4 2008
M.C. Rodriguez-Oroz Bilateral deep brain stimulation in Parkinson's disease: a multicentre study with 4 years follow-up Brain 128 2005 2240 2249 (Pubitemid 41407964)
M. Rosa, S. Marceglia, D. Servello, G. Foffani, L. Rossi, M. Sassi, S. Mrakic-Sposta, R. Zangaglia, M. Porta, and A. Priori Time dependent subthalamic local field potential changes after DBS surgery in Parkinson's disease Experimental Neurology 222 2 2010 184 190 C, C. P.
M. Rosenblum, and A. Pikovsky Delayed feedback control of collective synchrony: an approach to suppression of pathological brain rhythms Physical Review E 70 4 2004 041904
Sarlette, A. (2009). Geometry and symmetries in coordination control. Ph.D. thesis. University of Lige, (B).
S.V. Sarma, M. Cheng, Z. Williams, R. Hu, E. Eskandar, and E.N. Brown Comparing healthy and Parkinsonian neuronal activity in sub-thalamic nucleus using point process models IEEE Transactions on Biomedical Engineering 57 6 2010 1297 1305
L. Scardovi, A. Sarlette, and R. Sepulchre Synchronization and balancing on the N-torus. Syst. & Contr Letters 56 5 2007 335 341 (Pubitemid 46435726)
R. Sepulchre, D.A. Paley, and N.E. Leonard Stabilization of planar collective motion: all-to-all communication IEEE Transactions on Automatic Control 52 5 2007 811 824 (Pubitemid 46796067)
R. Sepulchre, D. Paley, and N.E. Leonard Stabilization of planar collective motion with limited communication IEEE Transactions on Automatic Control 53 3 2008 706 719 (Pubitemid 351597178)
E.D. Sontag, and Y. Wang New characterizations of Input-to-State Stability IEEE Transactions on Automatic Control 41 1996 1283 1294 (Pubitemid 126768503)
P.A. Tass A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations Biological Cybernetics 89 2003 81 88
N. Tukhlina, M. Rosenblum, A. Pikovsky, and J. Kurths Feedback suppression of neural synchrony by vanishing stimulation Physical Review E 75 1 2007 011918
J.L. Van Hemmen, and W.F. Wreszinski Lyapunov function for the Kuramoto model on nonlinearly coupled oscillators Journal of Statistical Physics 72 1993 145 166
J. Volkmann, M. Joliot, A. Mogilner, A.A. Ioannides, F. Lado, E. Fazzini, U. Ribary, and R. Llins Central motor loop oscillations in Parkinsonian resting tremor revealed by magnetoencephalography Neurology 46 1996 1359 1370 (Pubitemid 26159299)
A.T. Winfree The geometry of biological times 1980 Springer New-York