Bone; Bone mass; Fractures; Inflammation; Osteoporosis; Rheumatoid arthritis; Geriatrics and Gerontology; Aging
Abstract :
[en] Normal bone remodeling depends of a balance between bone forming cells, osteoblasts and bone resorbing cells, the osteoclasts. In chronic arthritides and some inflammatory and autoimmune diseases such as rheumatoid arthritis, there is a great constellation of cytokines produced by pannus that impair bone formation and stimulate bone resorption by inducing osteoclast differentiation and inhibiting osteoblast maturation. Patients with chronic inflammation have multiple causes that lead to low bone mineral density, osteoporosis and a high risk of fracture including circulating cytokines, impaired mobility, chronic administration of glucocorticoids, low vitamin D levels and post-menopausal status in women, among others. Biologic agents and other therapeutic measures to reach prompt remission might ameliorate these deleterious effects. In many cases, bone acting agents need to be added to conventional treatment to reduce the risk of fractures and to preserve articular integrity and independency for daily living activities. A limited number of studies related to fractures in chronic arthritides were published, and future investigation is needed to determine the risk of fractures and the protective effects of different treatments to reduce this risk.
Disciplines :
Public health, health care sciences & services
Author, co-author :
Messina, Osvaldo Daniel ; Collaborating Centre WHO, Investigaciones Reumatológicas y Osteológicas (IRO), Buenos Aires, Argentina ; International Osteoporosis Foundation (IOF), Buenos Aires, Argentina
Vidal, Maritza ; Centro de Diagnóstico de Osteoporosis y Enfermedades Reumáticas (CEDOR), Lima, Peru. maritzavw@gmail.com
Adami, Giovanni; Rheumatology Section, Department of Medicine, University of Verona, Verona, Italy
Vidal, Luis Fernando; Centro de Diagnóstico de Osteoporosis y Enfermedades Reumáticas (CEDOR), Lima, Peru ; Regional Advisory Council for Latin America - International Osteoporosis Foundation (IOF), Lima, Peru
Clark, Patricia; International Osteoporosis Foundation (IOF), Buenos Aires, Argentina ; Chief of Clinical Epidemiology Unit-Hospital Federico Gomez School of Medicine UNAM, Mexico City, Mexico
Torres, Jorge A Morales; Hospital Aranda de la Parra. León, Guanajuato, Mexico
Lems, William; Department of Rheumatology, Amsterdam UMC, Location VU University Medical Centre Amsterdam, Amsterdam, North-Holland, The Netherlands
Zerbini, Cristiano; Centro Paulista de Investigacao Clinica, São Paulo, Brazil
Arguissain, Constanza; Collaborating Centre WHO, Investigaciones Reumatológicas y Osteológicas (IRO), Buenos Aires, Argentina
Reginster, Jean-Yves ; Université de Liège - ULiège > Département des sciences de la santé publique
Lane, Nancy E; Center for Musculoskeletal Health, University of California at Davis School of Medicine, Sacramento, CA, 95817, USA
Language :
English
Title :
Chronic arthritides and bone structure: focus on rheumatoid arthritis-an update.
Shim JH, Stavre Z, Gravallese EM (2018) Bone loss in rheumatoid arthritis: basic mechanisms and clinical implications. Calcif Tissue Int 102:533–546 DOI: 10.1007/s00223-017-0373-1
McInnes IB, Schett G (2017) Pathogenetic insights from the treatment of rheumatoid arthritis. The Lancet 389:2328–2337 DOI: 10.1016/S0140-6736(17)31472-1
Boleto G, Dramé M, Lambrecht I et al (2017) Disease-modifying anti-rheumatic drug effect of denosumab on radiographic progression in rheumatoid arthritis: a systematic review of the literature. Clin Rheumatol 36:1699–1706 DOI: 10.1007/s10067-017-3722-6
Dubrovsky AM, Lim MJ, Lane NE (2018) Osteoporosis in rheumatic diseases: anti-rheumatic drugs and the skeleton. Calcif Tissue Int 102:607–618 DOI: 10.1007/s00223-018-0401-9
Adami G, Fassio A, Rossini M et al (2019) Osteoporosis in rheumatic diseases. Int J Mol Sci 20:5867 DOI: 10.3390/ijms20235867
Adami G, Saag KG (2019) Osteoporosis pathophysiology, epidemiology, and screening in rheumatoid arthritis. Curr Rheumatol Rep 21:34 DOI: 10.1007/s11926-019-0836-7
Baum R, Gravallese EM (2014) Impact of inflammation on the osteoblast in rheumatic diseases. Curr Osteoporos Rep 12:9–16 DOI: 10.1007/s11914-013-0183-y
Kenkre JS, Bassett JHD (2018) The bone remodelling cycle. Ann Clin Biochem 55:308–327 DOI: 10.1177/0004563218759371
Delaisse JM, Andersen TL, Kristensen HB et al (2020) Re-thinking the bone remodeling cycle mechanism and the origin of bone loss. Bone 141:115628 DOI: 10.1016/j.bone.2020.115628
Sun Y, Li J, Xie X et al (2021) Macrophage-osteoclast associations: origin, polarization, and subgroups. Front Immunol 12:778078 DOI: 10.3389/fimmu.2021.778078
Weivoda MM, Ruan M, Hachfeld CM et al (2016) Wnt signaling inhibits osteoclast differentiation by activating canonical and noncanonical cAMP/PKA pathways. J Bone Miner Res 31:65–75 DOI: 10.1002/jbmr.2599
Tian E, Zhan F, Walker R et al (2003) The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med 349:2483–2494 DOI: 10.1056/NEJMoa030847
Ma Y, Zhang X, Wang M et al (2018) The serum level of Dickkopf-1 in patients with rheumatoid arthritis: a systematic review and meta-analysis. Int Immunopharmacol 59:227–232 DOI: 10.1016/j.intimp.2018.04.019
Rossini M, Viapiana O, Adami S et al (2015) In patients with rheumatoid arthritis, Dickkopf-1 serum levels are correlated with parathyroid hormone, bone erosions and bone mineral density. Clin Exp Rheumatol 33:77–83
Uderhardt S, Diarra D, Katzenbeisser J et al (2010) Blockade of dickkopf (DKK)-1 induces fusion of sacroiliac joints. Ann Rheum Dis 69:592–597 DOI: 10.1136/ard.2008.102046
Li X, Wang J, Zhan Z et al (2018) Inflammation intensity-dependent expression of osteoinductive Wnt proteins is critical for ectopic new bone formation in ankylosing spondylitis. Arthritis Rheumatol 70:1056–1070 DOI: 10.1002/art.40468
Adami G, Orsolini G, Adami S et al (2016) Effects of TNF inhibitors on parathyroid hormone and Wnt signaling antagonists in rheumatoid arthritis. Calcif Tissue Int 99:360–364 DOI: 10.1007/s00223-016-0161-3
Takeuchi T, Tanaka Y, Ishiguro N et al (2016) Effect of denosumab on Japanese patients with rheumatoid arthritis: a dose–response study of AMG 162 (Denosumab) in patients with RheumatoId arthritis on methotrexate to validate inhibitory effect on bone Erosion (DRIVE)—a 12-month, multicentre, randomised, double-blind, placebo-controlled, phase II clinical trial. Ann Rheum Dis 75:983–990 DOI: 10.1136/annrheumdis-2015-208052
Tanaka S, Matsumoto T (2021) Sclerostin: from bench to bedside. JBMM 39:332–340 DOI: 10.1007/s00774-020-01176-0
Cohen SB, Dore RK, Lane NE et al (2008) Denosumab treatment effects on structural damage, bone mineral density, and bone turnover in rheumatoid arthritis: a twelve-month, multicenter, randomized, double-blind, placebo-controlled, phase II clinical trial. Arthritis Rheum 58:1299–1309 DOI: 10.1002/art.23417
Marsman AF, Heslinga SC, Lems WF (2022) Does denosumab not only prevent fractures, but also bone erosions in rheumatoid arthritis? Rheumatol Adv Pract 6:rkac052 DOI: 10.1093/rap/rkac052
Favero M, Giusti A, Geusens P et al (2015) OsteoRheumatology: a new discipline? RMD Open 1:e000083 DOI: 10.1136/rmdopen-2015-000083
Pietschmann P, Butylina M, Kerschan-Schindl K et al (2022) Mechanisms of systemic osteoporosis in rheumatoid arthritis. Int J Mol Sci 23:8740 DOI: 10.3390/ijms23158740
Reid IR, Billington EO (2022) Drug therapy for osteoporosis in older adults. The Lancet 399:1080–1092 DOI: 10.1016/S0140-6736(21)02646-5
Cheng C, Wentworth K, Shoback DM (2020) New frontiers in osteoporosis therapy. Annu Rev Med 71:277–288 DOI: 10.1146/annurev-med-052218-020620
Fabre S, Funck-Brentano T, Cohen-Solal M (2020) Anti-sclerostin antibodies in osteoporosis and other bone diseases. J Clin Med 9:3439 DOI: 10.3390/jcm9113439
Diarra D, Stolina M, Polzer K et al (2007) Dickkopf-1 is a master regulator of joint remodeling. Nat Med 13:156–163 DOI: 10.1038/nm1538
Adami G, Pontalti M, Cattani G et al (2022) Association between long-term exposure to air pollution and immune-mediated diseases: a population-based cohort study. RMD Open 8:e002055 DOI: 10.1136/rmdopen-2021-002055
Guo Q, Wang Y, Xu D et al (2018) Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone Res 6:15 DOI: 10.1038/s41413-018-0016-9
Llorente I, García-Castañeda N, Valero C et al (2020) Osteoporosis in rheumatoid arthritis: dangerous liaisons. Front Med 7:601618 DOI: 10.3389/fmed.2020.601618
Hafström I, Ajeganova S, Forslind K et al (2019) Anti-citrullinated protein antibodies are associated with osteopenia but not with pain at diagnosis of rheumatoid arthritis: data from the BARFOT cohort. Arthritis Res Ther 21:1–9 DOI: 10.1186/s13075-019-1833-y
Zerbini CAF, Clark P, Mendez-Sanchez L et al (2017) Biologic therapies and bone loss in rheumatoid arthritis. Osteoporos Int 28:429–446 DOI: 10.1007/s00198-016-3769-2
Kondo N, Kuroda T, Kobayashi D (2021) Cytokine networks in the pathogenesis of rheumatoid arthritis. Int J Mol Sci 22:10922 DOI: 10.3390/ijms222010922
Rana AK, Li Y, Dang Q et al (2018) Monocytes in rheumatoid arthritis: circulating precursors of macrophages and osteoclasts and their heterogeneity and plasticity role in RA pathogenesis. Int Immunopharmacol 65:348–359 DOI: 10.1016/j.intimp.2018.10.016
Schett G, Hayer S, Zwerina J et al (2005) Mechanisms of disease: the link between RANKL and arthritic bone disease. Nat Rev Rheumatol 1:47–54 DOI: 10.1038/ncprheum0036
Chen Z, Bozec A, Ramming A et al (2019) Anti-inflammatory and immune-regulatory cytokines in rheumatoid arthritis. Nat Rev Rheumatol 15:9–17 DOI: 10.1038/s41584-018-0109-2
Wu CY, Yang HY, Luo SF et al (2021) From rheumatoid factor to anti-citrullinated protein antibodies and anti-carbamylated protein antibodies for diagnosis and prognosis prediction in patients with rheumatoid arthritis. Int J Mol Sci 22:686 DOI: 10.3390/ijms22020686
Steffen U, Schett G, Bozec A (2019) How autoantibodies regulate osteoclast induced bone loss in rheumatoid arthritis. Front Immunol 10:1483 DOI: 10.3389/fimmu.2019.01483
van Delft MA, Huizinga TW (2020) An overview of autoantibodies in rheumatoid arthritis. J Autoimmun 110:102392 DOI: 10.1016/j.jaut.2019.102392
Studenic P, Alunno A, Sieghart D et al (2021) Presence of anti-acetylated peptide antibodies (AAPA) in inflammatory arthritis and other rheumatic diseases suggests discriminative diagnostic capacity towards early rheumatoid arthritis. Thera Adv Musculoskelet Dis 13:1759720X211022533
Nimmerjahn F, Ravetch J (2008) Fcγ receptors as regulators of immune responses. Nat Rev Immunol 8:34–47 DOI: 10.1038/nri2206
Harre U, Georgess D, Bang H et al (2012) Induction of osteoclastogenesis and bone loss by human autoantibodies against citrullinated vimentin. J Clin Investig 122:1791–1802 DOI: 10.1172/JCI60975
Wysham KD, Baker JF, Shoback DM (2021) Osteoporosis and fractures in rheumatoid arthritis. Curr Opin Rheumatol 33:270–276 DOI: 10.1097/BOR.0000000000000789
Raterman HG, Bultink IE, Lems WF (2020) Osteoporosis in patients with rheumatoid arthritis: an update in epidemiology, pathogenesis, and fracture prevention. Expert Opin Pharmacother 21:1725–1737 DOI: 10.1080/14656566.2020.1787381
Baker R, Narla R, Baker JF et al (2022) Risk factors for osteoporosis and fractures in rheumatoid arthritis. Best Pract Res Clin Rheumatol 36:101773 DOI: 10.1016/j.berh.2022.101773
Fardellone P, Salawati E, Le Monnier L et al (2020) Bone loss, osteoporosis, and fractures in patients with rheumatoid arthritis: a review. J Clin Med 9:3361 DOI: 10.3390/jcm9103361
Michaud K, Wolfe F (2007) Comorbidities in rheumatoid arthritis. Best Pract Res Clin Rheumatol 21:885–906 DOI: 10.1016/j.berh.2007.06.002
Wright NC, Walitt BT, Eaton CB et al (2011) Arthritis increases the risk for fractures-results from the women’s health initiative. J Rheumatol 38:1680–1688 DOI: 10.3899/jrheum.101196
Yoshii I, Sawada N, Chijiwa T et al (2022) Impact of sustaining SDAI remission for preventing incident of bone fragility fracture in patient with rheumatoid arthritis. Ann Rheum Dis 81:296–299 DOI: 10.1136/annrheumdis-2021-221093
Aeberli D, Eser P, Bonel H et al (2010) Reduced trabecular bone mineral density and cortical thickness accompanied by increased outer bone circumference in metacarpal bone of rheumatoid arthritis patients: a cross-sectional study. Arthritis Res Ther 12:1–10 DOI: 10.1186/ar3056
Jin S, Li M, Wang Q et al (2021) Bone mineral density and microarchitecture among Chinese patients with rheumatoid arthritis: a cross-sectional study with HRpQCT. Arthritis Res Ther 23:1–12 DOI: 10.1186/s13075-021-02503-0
Simon D, Kleyer A, Stemmler F et al (2017) Age- and sex-dependent changes of intra-articular cortical and trabecular bone structure and the effects of rheumatoid arthritis. J Bone Miner Res 32:722–730 DOI: 10.1002/jbmr.3025
Pruthi P, Singh AP (2022) Bilateral radial stress fractures in rheumatoid arthritis. J R Coll Physicians Edinb 52:57–58 DOI: 10.1177/14782715221088979
Lin PH, Yu SF, Chen JF et al (2021) Risk factor analysis of fragility fractures in rheumatoid arthritis: a 3-year longitudinal, real-world, observational, cohort study. PLoS ONE 16:e0255542 DOI: 10.1371/journal.pone.0255542
Messina OD, Vidal LF, Vidal M et al (2021) Management of glucocorticoid-induced osteoporosis. Aging Clin Exp Res 33:793–804 DOI: 10.1007/s40520-021-01823-0
Staa TV, Geusens P, Bijlsma JWJ et al (2006) Clinical assessment of the long-term risk of fracture in patients with rheumatoid arthritis. Arthritis Rheum 54:3104–3112 DOI: 10.1002/art.22117
Kanis JA, Johansson H, Oden A et al (2011) Guidance for the adjustment of FRAX according to the dose of glucocorticoids. Osteoporos Int 22:809–816 DOI: 10.1007/s00198-010-1524-7
Rizzoli R, Biver E (2015) Glucocorticoid-induced osteoporosis: who to treat with what agent? Nat Rev Rheumatol 11:98–109 DOI: 10.1038/nrrheum.2014.188
Ebeling PR, Nguyen HH, Aleksova J et al (2022) Secondary osteoporosis. Endocr Rev 43:240–313 DOI: 10.1210/endrev/bnab028
Wiebe E, Huscher D, Schaumburg D et al (2022) Optimising both disease control and glucocorticoid dosing is essential for bone protection in patients with rheumatic disease. Ann Rheum Dis 81:1313–1322 DOI: 10.1136/annrheumdis-2022-222339
Abtahi S, Driessen JH, Burden AM et al (2021) Concomitant use of oral glucocorticoids and proton pump inhibitors and risk of osteoporotic fractures among patients with rheumatoid arthritis: a population-based cohort study. Ann Rheum Dis 80:423–431 DOI: 10.1136/annrheumdis-2020-218758
Andersen BN, Johansen PB, Abrahamsen B (2016) Proton pump inhibitors and osteoporosis. Curr Op Rheumatol 28:420–425 DOI: 10.1097/BOR.0000000000000291
Ghebre YT (2020) Proton pump inhibitors and osteoporosis: is collagen a direct target? Front Endocrinol 11:473 DOI: 10.3389/fendo.2020.00473
Briganti SI, Naciu AM, Tabacco G et al (2021) Proton pump inhibitors and fractures in adults: a critical appraisal and review of the literature. Int J Endocrinol 2021:8902367
Hinson AM, Wilkerson BM, Rothman-Fitts I (2015) Hyperparathyroidism associated with long-term proton pump inhibitors independent of concurrent bisphosphonate therapy in elderly adults. J Am Geriatr Soc 63:2070–2073 DOI: 10.1111/jgs.13661
Hansen KE, Mortezavi M, Nagy E et al (2022) Fracture in clinical studies of tofacitinib in rheumatoid arthritis. Ther Adv Musculoskelet Dis 14:1–13 DOI: 10.1177/1759720X221142346
Batteux B, Bennis Y, Bodeau S et al (2021) Associations between osteoporosis and drug exposure: a post-marketing study of the World Health Organization pharmacovigilance database (VigiBase®). Bone 153:116137 DOI: 10.1016/j.bone.2021.116137
Pawar A, Desai RJ, He M et al (2021) Comparative risk of nonvertebral fractures among patients with rheumatoid arthritis treated with biologic or targeted synthetic disease-modifying antirheumatic drugs. ACR Open Rheumatol 3:531–539 DOI: 10.1002/acr2.11292
Huusko TM, Korpela M, Karppi P et al (2001) Threefold increased risk of hip fractures with rheumatoid arthritis in Central Finland. Ann Rheum Dis 60:521–522 DOI: 10.1136/ard.60.5.521
Abdel Meguid MH, Hamad YH, Swilam RS et al (2013) Relation of interleukin-6 in rheumatoid arthritis patients to systemic bone loss and structural bone damage. Rheumatol Int 33:697–703 DOI: 10.1007/s00296-012-2375-7
Yue J, Griffith JF, Xiao F et al (2017) Repair of bone erosion in rheumatoid arthritis by denosumab: a high-resolution peripheral quantitative computed tomography study. Arthritis Care Res 69:1156–1163 DOI: 10.1002/acr.23133
Hasegawa T, Kaneko Y, Izumi K et al (2016) Efficacy of denosumab combined with bDMARDs on radiographic progression in rheumatoid arthritis. J Bone Spine 84:379–380 DOI: 10.1016/j.jbspin.2016.05.010
Clynes MA, Jameson K, Prieto-Alhambra D et al (2019) Impact of rheumatoid arthritis and its management on falls, fracture and bone mineral density in UK Biobank. Front Endocrinol 10:817 DOI: 10.3389/fendo.2019.00817
Hong WJ, Chen W, Yeo KJ et al (2019) Increased risk of osteoporotic vertebral fracture in rheumatoid arthritis patients with new-onset cardiovascular diseases: a retrospective nationwide cohort study in Taiwan. Osteoporos Int 30:1617–1625 DOI: 10.1007/s00198-019-04966-z