Fluid Flow and Transfer Processes; mixing; drop impact; droplet physics; fluid mechanics; experimental fluid mechanics
Abstract :
[en] The impact of drops on a thin liquid film is a phenomenon encountered in industrial applications, but also of particular interest in nature. Examples include the growth of stalagmites in karstic caves, a case where the drop feeds the film with ions that will subsequently precipitate. The mixing upon impact, which is witnessed both in the film and in the ejections, remains poorly understood. In the case of stalagmites, this short-term mixing directly affects the ion distribution in the film between impacts. In this work we investigate the mixing and ejection processes occurring during the impact of a free-falling drop on a thin, horizontal film of miscible liquid. We perform laboratory experiments and record side and top views of high-speed movies of impacts in a range of parameters close to impacts observed on stalagmites in caves. We observe that several outcomes arise from these impacts depending on the initial film thickness and Weber number. We relate the geometry of the splashing crown growth to the four scenarios observed. Additionally, the postimpact mixing patterns and film thickness variations are analyzed through an original colorimetry-based technique. From there we infer the size of the stain and quantity of water left by the drop in the film, as well as the total volume ejected away during the impact.
Disciplines :
Physics
Author, co-author :
Parmentier, Justine ; Université de Liège - ULiège > Aérospatiale et Mécanique (A&M)
Terrapon, Vincent ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Modélisation et contrôle des écoulements turbulents
Gilet, Tristan ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Microfluidique
Language :
English
Title :
Drop impact on thin film: Mixing, thickness variations, and ejections
Alternative titles :
[fr] Impact d'une goutte sur un film mince : mélange, variations d'épaisseurs et éjections
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
M. Rein, Phenomena of liquid drop impact on solid and liquid surfaces, Fluid Dyn. Res. 12, 61 (1993) 0169-5983 10.1016/0169-5983(93)90106-K.
A. L. Yarin, Drop impact dynamics: Splashing, spreading, receding, bouncing (Equation presented), Annu. Rev. Fluid Mech. 38, 159 (2006) 0066-4189 10.1146/annurev.fluid.38.050304.092144.
J. Breitenbach, I. Roisman, and C. Tropea, From drop impact physics to spray cooling models: A critical review, Exp. Fluids 59, 55 (2018) 10.1007/s00348-018-2514-3.
Q. Liu and M. Orme, High precision solder droplet printing technology and the state-of-the-art, J. Mater. Process. Technol. 115, 271 (2001) 0924-0136 10.1016/S0924-0136(01)00740-3.
C. Vernay, L. Ramos, J.-P.Douzals, R. Goyal, J.-C. Castaing, and C. Ligoure, Drop impact experiment as a model experiment to investigate the role of oil-in-water emulsions in controlling the drop size distribution of an agricultural spray, Atomiz Spr 26, 827 (2016) 1044-5110 10.1615/AtomizSpr.2015013630.
L. Deike, Mass transfer at the ocean-atmosphere interface: The role of wave breaking, droplets, and bubbles, Annu. Rev. Fluid Mech. 54, 191 (2022) 0066-4189 10.1146/annurev-fluid-030121-014132.
Y. Joung and C. Buie, Aerosol generation by raindrop impact on soil, Nat. Commun. 6, 6083 (2015) 2041-1723 10.1038/ncomms7083.
A. Baker, C. L. Smith, C. Jex, I. J. Fairchild, D. Genty, and L. Fuller, Annually laminated speleothems: A review, Int. J. Speleol. 37, 193 (2008) 0392-6672 10.5038/1827-806X.37.3.4.
A. Baker, D. Genty, W. Dreybrodt, W. L.Barnes, N. J. Mockler, and J. Grapes, Testing theoretically predicted stalagmite growth rate with recent annually laminated samples: Implications for past stalagmite deposition, Geochim. Cosmochim. Acta 62, 393 (1998) 0016-7037 10.1016/S0016-7037(97)00343-8.
T. Gilet and L. Bourouiba, Fluid fragmentation shapes rain-induced foliar disease transmission, J. R. Soc. Interface 12, 20141092 (2015) 1742-5689 10.1098/rsif.2014.1092.
S. Lejeune, T. Gilet, and L. Bourouiba, Edge effect: Liquid sheet and droplets formed by drop impact close to an edge, Phys. Rev. Fluids 3, 083601 (2018) 2469-990X 10.1103/PhysRevFluids.3.083601.
S. Lejeune and T. Gilet, Drop impact close to the edge of an inclined substrate: Liquid sheet formation and breakup, Phys. Rev. Fluids 4, 053601 (2019) 2469-990X 10.1103/PhysRevFluids.4.053601.
W. Dreybrodt, Processes in Karst Systems, Springer series in physical environment (Springer, Berlin, 1988).
D. Buhmann and W. Dreybrodt, The kinetics of calcite dissolution and precipitation in geologically relevant situations of karst areas: 1. Open system, Chem. Geol. 48, 189 (1985) 0009-2541 10.1016/0009-2541(85)90046-4.
W. Dreybrodt, Chemical kinetics, speleothem growth and climate, Boreas 28, 347 (1999) 0300-9483 10.1111/j.1502-3885.1999.tb00224.x.
M. Tan, A. Baker, D. Genty, C. SMith, J. Esperd, and B. Cai, Applications of stalagmite laminae to paleoclimate reconstructions: Comparison with dendrochronology/climatology, Quat. Sci. Rev. 25, 2103 (2006) 0277-3791 10.1016/j.quascirev.2006.01.034.
I. Labuhn, D. Genty, H. Vonhof, C. Bourdin, D. Blamart, E. Douville, J. Ruan, H. Cheng, R. L. Edwards, E. Pons-Branchu, and M. Pierre, A high-resolution fluid inclusion (Equation presented) record from a stalagmite in SW France: Modern calibration and comparison with multiple proxies, Quat. Sci. Rev. 110, 152 (2015) 0277-3791 10.1016/j.quascirev.2014.12.021.
Y. A. Brahim, M. C. Peros, A. E. Viau, M. Liedtke, J. M. Pajón, J. Valdes, R. L. E. X. Li, E. G. Reinhardt, and F. Oliva, Hydroclimate variability in the Caribbean during north atlantic Heinrich cooling events (H8 and H9), Sci. Rep. UK 12, 24610 (2022) 10.1038/s41598-022-24610-x.
J. Baldini, Cave atmosphere controls on stalagmite growth rate and palaeoclimate records, Geol. Soc., London, Spec. Publ. 336, 283 (2010) 0305-8719 10.1144/SP336.15.
D. Genty, A. Baker, and B. Vokal, Intra-and inter-annual growth rate of modern stalagmites, Chem. Geol. 176, 191 (2001) 0009-2541 10.1016/S0009-2541(00)00399-5.
J. U. L. Baldini, F. A. Lechleitner, S. F. M. Breitenbach, J. van Hunen, L. M. Baldini, P. M. Wynn, R. A. Jamieson, H. E. Ridley, A. J. Baker, I. W. Walczak, and J. Fohlmeister, Detecting and quantifying palaeoseasonality in stalagmites using geochemical and modelling approaches, Quat. Sci. Rev. 254, 106784 (2021) 0277-3791 10.1016/j.quascirev.2020.106784.
E. Nakouzi, R. E. Goldstein, and O. Steinbock, Do dissolving objects converge to a universal shape, Langmuir 31, 4145 (2015) 0743-7463 10.1021/la503562z.
W. Dreybrodt, Evolution of the isotopic composition of carbon and oxygen in a calcite precipitating (Equation presented) solution and the related isotopic composition of calcite in stalagmites, Geochim. Cosmochim. Acta 72, 4712 (2008) 0016-7037 10.1016/j.gca.2008.07.022.
J. Parmentier, S. Lejeune, M. Maréchal, F. Bourges, D. Genty, V. Terrapon, J.-C. Maréchal, and T. Gilet, A drop does not fall in a straight line: A rationale for the width of stalagmites, P. R. Soc. A 475, 20190556 (2019) 10.1098/rspa.2019.0556.
E. Reyssat, F. Chevy, A.-L. Biance, L. Petitjean, and D. Quéré, Shape and instability of free-falling liquid globules, Europhys. Lett. 80, 34005 (2007) 0295-5075 10.1209/0295-5075/80/34005.
E. Villermaux and B. Bossa, Single-drop fragmentation determines size distribution of raindrops, Nat. Phys. 5, 697 (2009) 1745-2473 10.1038/nphys1340.
A.-B. Wang and C.-C. Chen, Splashing impact of a single drop onto very thin liquid films, Phys. Fluids 12, 2155 (2000) 1070-6631 10.1063/1.1287511.
G. E. Cossali, M. Marengo, A. Coghe, and S. Zhdanov, The role of time in single drop splash on thin film, Exp. Fluids 36, 888 (2004) 0723-4864 10.1007/s00348-003-0772-0.
Z. Levin and P. V. Hobbs, Splashing of water drops on solid and wetted surfaces: Hydrodynamics and charge separation, Philos. T. R. Soc. S.-A 269, 555 (1971) 10.1098/rsta.1971.0052.
L. V. Zhang, P. Brunet, J. Eggers, and R. D. Deegan, Wavelength selection in the crown splash, Phys. Fluids 22, 122105 (2010) 10.1063/1.3526743.
I. V. Roisman and C. Tropea, Impact of a drop onto a wetted wall: Description of crown formation and propagation, J. Fluid Mech. 472, 373 (2002) 0022-1120 10.1017/S0022112002002434.
C. Josserand, P. Ray, and S. Zaleski, Droplet impact on a thin liquid film: Anatomy of the splash, J. Fluid Mech. 802, 775 (2016) 0022-1120 10.1017/jfm.2016.468.
G. E. Cossali, A. Coghe, and M. Marengo, The impact of a single drop on a wetted solid surface, Exp. Fluids 22, 463 (1997) 0723-4864 10.1007/s003480050073.
R. Rioboo, C. Bauthier, J. Conti, M. Voué, and J. D. Coninck, Experimental investigation of splash and crown formation during single drop impact on wetted surfaces, Exp. Fluids 35, 648 (2003) 0723-4864 10.1007/s00348-003-0719-5.
A. I. Fedorchenko and A.-B. Wang, On some common features of drop impact on liquid surfaces, Phys. Fluids 16, 1349 (2004) 1070-6631 10.1063/1.1652061.
M. Beczek, M. Ryżak, A. Sochan, R. Mazur, C. Polakowski, and A. Bieganowski, The differences in crown formation during the splash on the thin water layers formed on the saturated soil surface and model surface, PLoS ONE 12, e0181974 (2017) 1932-6203 10.1371/journal.pone.0181974.
N. Chen, H. Chen, and A. Amirfazli, Drop impact onto a thin film: Miscibility effect, Phys. Fluids 29, 092106 (2017) 10.1063/1.5001743.
H. M. Kittel, I. V. Roisman, and C. Tropea, Splash of a drop impacting onto a solid substrate wetted by a thin film of another liquid, Phys. Rev. Fluids 3, 073601 (2018) 2469-990X 10.1103/PhysRevFluids.3.073601.
N. E. Ersoy and M. Eslamian, Capillary surface waves formation and mixing of miscible liquids during drop impact onto a liquid film, Phys. Fluids 31, 012107 (2019) 1070-6631 10.1063/1.5064640.
E. Villermaux and B. Bossa, Drop fragmentation on impact, J. Fluid Mech. 668, 412 (2011) 0022-1120 10.1017/S002211201000474X.
F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, Incropera's Principles of Heat and Mass Transfer (Wiley, New York, NY, 2017).
A. L. N. Moreira, A. S. Moita, and M. R. Panão, Advances and challenges in explaining fuel spray impingement: How much of single droplet impact research is useful Prog. Energy Combust. Sci. 36, 554 (2010) 0360-1285 10.1016/j.pecs.2010.01.002.
N. Laan, K. G. de Bruin, D. Bartolo, C. Josserand, and D. Bonn, Maximum Diameter of Impacting Liquid Droplets, Phys. Rev. Appl. 2, 044018 (2014) 2331-7019 10.1103/PhysRevApplied.2.044018.
C. Clanet, C. Béguin, D. Richard, and D. Quéré, Maximal deformation of an impacting drop, J. Fluid Mech. 517, 199 (1999) 0022-1120 10.1017/S0022112004000904.
J. M. Gordillo, G. Riboux, and E. S. Quintero, A theory on the spreading of impacting droplets, J. Fluid Mech. 866, 298 (2019) 0022-1120 10.1017/jfm.2019.117.
R. Rioboo, C. Tropea, and M. Marengo, Outcomes from a drop impact on solid surfaces, Atomiz Spr 11, 155 (2001) 1044-5110 10.1615/AtomizSpr.v11.i2.40.
C. Antonini, A. Amirfazli, and M. Marengo, Drop impact and wettability: From hydrophilic to superhydrophobic surfaces, Phys. Fluids 24, 102104 (2012) 1070-6631 10.1063/1.4757122.
K. Koch and R. Grichnik, Influence of surface structure and chemistry on water droplet splashing, Phil. T. R. Soc. A 374, 20160183 (2016) 10.1098/rsta.2016.0183.
P. García-Geijo, G. Riboux, and J. M. Gordillo, Inclined impact of drops, J. Fluid Mech. 897, A12 (2020) 0022-1120 10.1017/jfm.2020.373.
Y. Liu, M. Andrew, J. Li, J. M. Yeomans, and Z. Wang, Symmetry breaking in drop bouncing on curved surfaces, Nat. Commun. 6, 10034 (2015) 10.1038/ncomms10034.
W. C. Macklin and G. J. Metaxas, Splashing of drops on liquid layers, J. Appl. Phys. 47, 3963 (1976) 0021-8979 10.1063/1.323218.
E. Berberović, N. P. van Hinsberg, S. Jakirlić, I. V. Roisman, and C. Tropea, Drop impact onto a liquid layer of finite thickness: Dynamics of the cavity evolution, Phys. Rev. E 79, 036306 (2009) 10.1103/PhysRevE.79.036306.
A. M. Worthington, On impact with a liquid surface, Proc. R. Soc. Lond. 34, 217 (1883) 0370-1662 10.1098/rspl.1882.0035.
B. Ray, G. Biswas, and A. Sharma, Regimes during liquid drop impact on a liquid pool, J. Fluid Mech. 768, 492 (2015) 0022-1120 10.1017/jfm.2015.108.
O. G. Engel, Crater depth in fluid impacts, J. Appl. Phys. 37, 1798 (1966) 0021-8979 10.1063/1.1708605.
W. Ju, Y. Wu, S. Lin, F. Zhao, and S. Tan, Visual experimental study of droplet impinging on liquid film and analysis of droplet evolution characteristics, Exp. Comput. Multiph. Flow 4, 212 (2020) 10.1007/s42757-020-0081-3.
I. V. Roisman, K. Horvat, and C. Tropea, Spray impact: Rim transverse instability initiating fingering and splash, and description of a secondary spray, Phys. Fluids 18, 102104 (2006) 1070-6631 10.1063/1.2364187.
See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevFluids.8.053603 for raw data measurements and side and top view videos of each impact scenario described in Sec. III and presented in Fig. 6.
C. Josserand and S. Thoroddsen, Drop impact on a solid surface, Annu. Rev. Fluid Mech. 48, 365 (2016) 0066-4189 10.1146/annurev-fluid-122414-034401.
M. R. Davidson, Spreading of an inviscid drop impacting on a liquid film, Chem. Eng. Sci. 57, 3639 (2002) 0009-2509 10.1016/S0009-2509(02)00266-X.
G. Liang, T. Zhang, H. Chen, H. Yu, and S. Shen, Successive impact of multiple droplets on liquid film, Eur. J. Mech. B Fluids 74, 389 (2018) 10.1016/j.euromechflu.2018.09.011.
D. A. Weiss and A. L. Yarin, Single drop impact onto liquid films: Neck distortion, jetting, tiny bubble entrainment, and crown formation, J. Fluid Mech. 385, 229 (1999) 0022-1120 10.1017/S002211209800411X.
T. Gilet, K. Mulleners, J. P. Lecomte, N. Vandewalle, and S. Dorbolo, Critical parameters for the partial coalescence of a droplet, Phys. Rev. E 75, 036303 (2007) 1539-3755 10.1103/PhysRevE.75.036303.
O. W. Jayaratne and B. J. Mason, The coalescence and bouncing of water drops at an air/water interface, Proc. R. Soc. A 280, 545 (1964) 10.1098/rspa.1964.0161.
A. L. Yarin and D. A. Weiss, Impact of drops on solid surfaces: Self-similar capillary waves, and splashing as a new type of kinematic discontinuity, J. Fluid Mech. 283, 141 (1995) 0022-1120 10.1017/S0022112095002266.
M. Jalaal, C. Seyfert, and J. H. Snoeijer, Capillary ripples in thin viscous films, J. Fluid Mech. 880, 430 (2019) 0022-1120 10.1017/jfm.2019.734.
P.-G. D. Gennes, F. Brochard-Wyart, and D. Quéré, Capillarity and Wetting Phenomena (Springer, Berlin, 2004).
A. N. Chebotarev, K. V. Bevziuk, D. V. Snigur, and Y. R. Bazel, The brilliant blue FCF ion-molecular forms in solutions according to the spectrophotometry data, Russ. J. Phys. Chem. 91, 1907 (2017) 0036-0244 10.1134/S0036024417100089.
M. Taniguchi and J. S. Lindsey, Database of absorption and fluorescence spectra of more than 300 common compounds for use in photochemcad, Photochem Photobiol 94, 290 (2018) 0031-8655 10.1111/php.12860.
P. Gräb and E. Geidel, Spectroscopic studies of food colorings, World J. Chem. Ed. 7, 136 (2019) 2375-1665 10.12691/wjce-7-2-13.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.