Anomalies of O3, CO, C2H2, H2CO, and C2H6 detected with multiple ground-based Fourier-transform infrared spectrometers and assessed with model simulation in 2020: COVID-19 lockdowns versus natural variability
Ortega, Ivan; Gaubert, Benjamin; Hannigan, James W.et al.
2023 • In Elementa: Science of the Anthropocene, 11 (1)
[en] Anomalies of tropospheric columns of ozone (O3), carbon monoxide (CO), acetylene (C2H2), formaldehyde (H2CO), and ethane (C2H6) are quantified during the 2020 stringent COVID-19 world-wide lockdown using multiple ground-based Fourier-transform infrared spectrometers covering urban and remote conditions. We applied an exponential smoothing forecasting approach to the data sets to estimate business-as-usual values for 2020, which are then contrasted with actual observations. The Community Atmosphere Model with chemistry (CAM-chem) is used to simulate the same gases using lockdown-adjusted and business-as-usual emissions. The role of meteorology, or natural variability, is assessed with additional CAM-chem simulations. The tropospheric column of O3 declined between March and May 2020 for most sites with a mean decrease of 9.2% ± 4.7%. Simulations reproduce these anomalies, especially under background conditions where natural variability explains up to 80% of the decline for sites in the Northern Hemisphere. While urban sites show a reduction between 1% and 12% in tropospheric CO, the remote sites do not show a significant change. Overall, CAM-chem simulations capture the magnitude of the anomalies and in many cases natural variability and lockdowns have opposite effects. We further used the long-term record of the Measurements of Pollution in the Troposphere (MOPITT) satellite instrument to capture global anomalies of CO. Reductions of CO vary highly across regions but North America and Europe registered lower values in March 2020. The absence of CO reduction in April and May, concomitant with reductions of anthropogenic emissions, is explained by a negative anomaly in the hydroxyl radical (OH) found with CAM-chem. The implications of these findings are discussed for methane (CH4), which shows a positive lifetime anomaly during the COVID-19 lockdown period. The fossil fuel combustion by-product tracer C2H2 shows a mean drop of 13.6% ± 8.3% in urban Northern Hemisphere sites due to the reduction in emissions and in some sites exacerbated by natural variability. For some sites with anthropogenic influence there is a decrease in C2H6. The simulations capture the anomalies but the main cause may be related to natural variability. H2CO declined during the stringent 2020 lockdown in all urban sites explained by reductions in emissions of precursors.
Research Center/Unit :
SPHERES - ULiège
Disciplines :
Earth sciences & physical geography
Author, co-author :
Ortega, Ivan; 1Atmospheric Chemistry Observations & Modeling, National Center for Atmospheric Research, Boulder, CO, USA
Gaubert, Benjamin; 1Atmospheric Chemistry Observations & Modeling, National Center for Atmospheric Research, Boulder, CO, USA
Hannigan, James W.; 1Atmospheric Chemistry Observations & Modeling, National Center for Atmospheric Research, Boulder, CO, USA
Brasseur, Guy; 1Atmospheric Chemistry Observations & Modeling, National Center for Atmospheric Research, Boulder, CO, USA ; 2Environmental Modeling Group, Max Planck Institute for Meteorology, Hamburg, Germany
Worden, Helen M.; 1Atmospheric Chemistry Observations & Modeling, National Center for Atmospheric Research, Boulder, CO, USA
Blumenstock, Thomas; 3Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research (IMK-ASF), Karlsruhe, Germany
Fu, Hao; 4Laboratoire d’Etudes du Rayonnement et de la Matière en Astrophysique et Atmosphères, Sorbonne Université, CNRS, Observatoire de Paris, PSL Université, Paris, France
Hase, Frank; 3Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research (IMK-ASF), Karlsruhe, Germany
Jeseck, Pascal; 4Laboratoire d’Etudes du Rayonnement et de la Matière en Astrophysique et Atmosphères, Sorbonne Université, CNRS, Observatoire de Paris, PSL Université, Paris, France
Jones, Nicholas; 5School of Physics, University of Wollongong, Wollongong, Australia
Liu, Cheng; 6Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, China
Mahieu, Emmanuel ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Groupe infra-rouge de physique atmosphérique et solaire (GIRPAS)
Morino, Isamu; 8National Institute for Environmental Studies, Tsukuba, Japan
Murata, Isao; 9Graduate School of Environmental Studies, Tohoku University, Sendai, Japan
Notholt, Justus; 10Institute of Environmental Physics, University of Bremen, Germany
Palm, Mathias; 10Institute of Environmental Physics, University of Bremen, Germany
Röhling, Amelie; 3Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research (IMK-ASF), Karlsruhe, Germany
Té, Yao; 4Laboratoire d’Etudes du Rayonnement et de la Matière en Astrophysique et Atmosphères, Sorbonne Université, CNRS, Observatoire de Paris, PSL Université, Paris, France
Strong, Kimberly; 11Department of Physics, University of Toronto, Toronto, Ontario, Canada
Sun, Youwen; 12Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei, China
Yamanouchi, Shoma; 11Department of Physics, University of Toronto, Toronto, Ontario, Canada
Anomalies of O3, CO, C2H2, H2CO, and C2H6 detected with multiple ground-based Fourier-transform infrared spectrometers and assessed with model simulation in 2020: COVID-19 lockdowns versus natural variability
Addas, A, Maghrabi, A. 2021. The impact of COVID-19 lockdowns on air quality–A global review. Sustainability 13(18). DOI: http://dx.doi.org/10.3390/ su131810212. Available at https://www.mdpi.com/2071-1050/13/18/10212.
Akimoto, H, Tanimoto, H. 2022. Rethinking of the adverse effects of NOx-control on the reduction of methane and tropospheric ozone—Challenges toward a denitrified society. Atmospheric Environment 277: 119033. DOI: http://dx.doi.org/10.1016/j.atmosenv.2022.119033.
Albores, I, Buchholz, R, Ortega, I, Emmons, L, Hannigan, J, Lacey, F, Pfister, G, Tang, W, Worden, HM. 2023. Continental-scale atmospheric impacts of the 2020 western U.S. wildfires. Atmospheric Environment 294: 119436. DOI: http://dx.doi.org/10. 1016/j.atmosenv.2022.119436. Available at https://www.sciencedirect.com/science/article/pii/ S1352231022005015.
Bouarar, I, Gaubert, B, Brasseur, GP, Steinbrecht, W, Doumbia, T, Tilmes, S, Liu, Y, Stavrakou, T, Deroubaix, A, Darras, S, Granier, C, Lacey, F, Müller, J-F, Shi, X, Elguindi, N, Wang, T. 2021. Ozone anomalies in the free troposphere during the COVID-19 pandemic. Geophysical Research Letters 48(16): e2021GL094204. DOI: http://dx.doi.org/10.1029/ 2021GL094204.
Buchholz, RR, Park, M, Worden, HM, Tang, W, Edwards, DP, Gaubert, B, Deeter, MN, Sullivan, T, Ru, M, Chin, M, Levy, RC, Zheng, B, Magzamen, S. 2022. New seasonal pattern of pollution emerges from changing North American wildfires. Nature Communications 13(1). DOI: http://dx.doi.org/10.1038/s41467-022-29623-8.
Buchholz, RR, Worden, HM, Park, M, Francis, G, Deeter, MN, Edwards, DP, Emmons, LK, Gaubert, B, Gille, J, Martínez-Alonso, S, Tang, W, Kumar, R, Drummond, JR, Clerbaux, C, George, M, Coheur, P-F, Hurtmans, D, Bowman, KW, Luo, M, Payne, VH, Kulawik, SS. 2021. Air pollution trends measured from Terra: CO and AOD over industrial, fire-prone, and background regions. Remote Sensing of Environment 256: 112275. DOI: http://dx.doi.org/10.1016/j.rse.2020.112275.
Clark, H, Bennouna, Y, Tsivlidou, M, Wolff, P, Sauvage, B, Barret, B, Flochmoën, EL, Blot, R, Boulanger, D, Cousin, J-M, Nédélec, P, Petzold, A, Thouret, V. 2021. The effects of the COVID-19 lockdowns on the composition of the troposphere as seen by In-service Aircraft for a Global Observing System (IAGOS) at Frankfurt. Atmospheric Chemistry and Physics 21(21): 16237–16256. DOI: http://dx.doi.org/10.5194/acp-21-16237-2021.
Computational and Information Systems Laboratory. 2019. Cheyenne: SGI ICE XA Cluster. DOI: http://dx.doi.org/10.5065/D6RX99HX.
Cristofanelli, P, Arduni, J, Serva, F, Calzolari, F, Bonasoni, P, Maurizio, B, Michela, M, Michael, S, Pamela, T, Davide, P. 2021. Negative ozone anomalies at a high mountain site in northern Italy during 2020: A possible role of COVID-19 lockdowns? Environmental Research Letters 16(7): 074029. DOI: http://dx.doi.org/10.1088/1748-9326/ac0b6a.
Danabasoglu, G, Lamarque, JF, Bacmeister, J, Bailey, DA, DuVivier, AK, Edwards, J, Emmons, LK, Fasullo, J, Garcia, R, Gettelman, A, Hannay, C, Holland, MM, Large, WG, Lauritzen, PH, Lawrence, DM, Lenaerts, JTM, Lindsay, K, Lipscomb, WH, Mills, MJ, Neale, R, Oleson, KW, Otto-Bliesner, B, Phillips, AS, Sacks, W, Tilmes, S, van Kampenhout, L, Vertenstein, M, Bertini, A, Dennis, J, Deser, C, Fischer, C, Fox-Kemper, B, Kay, JE, Kinnison, D, Kushner, PJ, Larson, VE, Long, MC, Mickelson, S, Moore, JK, Nienhouse, E, Polvani, L, Rasch, PJ, Strand, WG. 2020. The community earth system model version 2 (CESM2). Journal of Advances in Modeling Earth Systems 12(2): e2019MS001916. DOI: http://dx.doi.org/10.1029/ 2019MS001916.
Darmenov, A, da Silva, AM. 2014. The QuickFire emissions dataset (QFED)–Documentation of versions 2. 1, 2.2 and 2.4. NASATM-2013-104606 35: 183.
Deroubaix, A, Brasseur, G, Gaubert, B, Labuhn, I, Menut, L, Siour, G, Tuccella, P. 2021. Response of surface ozone concentration to emission reduction and meteorology during the COVID-19 lockdown in Europe. Meteorological Applications 28(3): e1990. DOI: http://dx.doi.org/10.1002/met.1990.
Doumbia, T, Granier, C, Elguindi, N, Bouarar, I, Darras, S, Brasseur, G, Gaubert, B, Liu, Y, Shi, X, Stavrakou, T, Tilmes, S, Lacey, F, Deroubaix, A, Wang, T. 2021. Changes in global air pollutant emissions during the COVID-19 pandemic: A dataset for atmospheric modeling. Earth System Science Data 13(8): 4191–4206. DOI: http://dx.doi.org/10.5194/essd-13-4191-2021.
Drummond, JR, Zou, J, Nichitiu, F, Kar, J, Deschambaut, R, Hackett, J. 2010. A review of 9-year performance and operation of the MOPITT instrument. Advances in Space Research 45(6): 760–774. DOI: http://dx.doi.org/10.1016/j.asr.2009.11.019.
Emmons, LK, Hess, PG, Lamarque, JF, Pfister, GG. 2012. Tagged ozone mechanism for MOZART-4, CAM-chem and other chemical transport models. Geoscientific Model Development 5(6): 1531–1542. DOI: http://dx.doi.org/10.5194/gmd-5-1531-2012.
Emmons, LK, Schwantes, RH, Orlando, JJ, Tyndall, G, Kinnison, D, Lamarque, J-F, Marsh, D, Mills, MJ, Tilmes, S, Bardeen, C, Buchholz, RR, Conley, A, Gettelman, A, Garcia, R, Simpson, I, Blake, DR, Meinardi, S, Pétron, G. 2020. The Chemistry Mechanism in the Community Earth System Model Version 2 (CESM2). Journal of Advances in Modeling Earth Systems 12(4): e2019MS001882. DOI: http://dx.doi.org/10.1029/2019MS001882.
Franco, B, Bader, W, Toon, G, Bray, C, Perrin, A, Fischer, EV, Sudo, K, Boone, CD, Bovy, B, Lejeune, B, Servais, C, Mahieu, E. 2015. Retrieval of ethane from ground-based FTIR solar spectra using improved spectroscopy: Recent burden increase above Jungfraujoch. Journal of Quantitative Spectroscopy and Radiative Transfer 160: 36–49. DOI: http://dx.doi.org/10.1016/j.jqsrt.2015.03.017.
Gaubert, B, Bouarar, I, Doumbia, T, Liu, Y, Stavrakou, T, Deroubaix, A, Darras, S, Elguindi, N, Granier, C, Lacey, F, Müller, J-F, Shi, X, Tilmes, S, Wang, T, Brasseur, GP. 2021. Global changes in secondary atmospheric pollutants during the 2020 COVID-19 pandemic. Journal of Geophysical Research: Atmospheres 126(8): e2020JD034213. DOI: http://dx.doi.org/10.1029/2020JD034213.
Gaubert, B, Darras, S, Doumbia, T, Granier, C, Soulié, A, Tilmes, S. 2023. 2020 CAM-chem Simulations. Version 1.0. UCAR/NCAR - GDEX. DOI: https://doi. org/10.5065/c3cb-dv78. Accessed May 12, 2023.
Gaubert, B, Emmons, LK, Raeder, K, Tilmes, S, Miyazaki, K, Arellano, AF JR, Elguindi, N, Granier, C, Tang, W, Barré, J, Worden, HM, Buchholz, RR, Edwards, DP, Franke, P, Anderson, JL, Saunois, M, Schroeder, J, Woo, J-H, Simpson, IJ, Blake, DR, Meinardi, S, Wennberg, PO, Crounse, J, Teng, A, Kim, M, Dickerson, RR, He, H, Ren, X, Pusede, SE, Diskin, GS. 2020. Correcting model biases of CO in East Asia: Impact on oxidant distributions during KORUS-AQ. Atmospheric Chemistry and Physics 20(23): 14617–14647. DOI: http://dx.doi.org/10.5194/acp-20-14617-2020. Available at https://acp.copernicus.org/articles/20/14617/2020/.
Gelaro, R, McCarty, W, Suárez, MJ, Todling, R, Molod, A, Takacs, L, Randles, CA, Darmenov, A, Bosilovich, MG, Reichle, R, Wargan, K, Coy, L, Cullather, R, Draper, C, Akella, S, Buchard, V, Conaty, A, da Silva, AM, Gu, W, Kim, G-K, Koster, R, Lucchesi, R, Merkova, D, Nielsen, JE, Partyka, G, Pawson, S, Putman, W, Rienecker, M, Schubert, SD, Sienkiewicz, M, Zhao, B. 2017. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). Journal of Climate 30(14): 5419–5454. DOI: http://dx.doi.org/10.1175/JCLI-D-16-0758.1.
Gkatzelis, GI, Gilman, JB, Brown, SS, Eskes, H, Gomes, AR, Lange, AC, McDonald, BC, Peischl, J, Petzold, A, Thompson, CR, Kiendler-Scharr, A. 2021. The global impacts of COVID-19 lockdowns on urban air pollution: A critical review and recommendations. Elementa: Science of the Anthropocene 9(1): 00176. DOI: http://dx.doi.org/10.1525/elementa.2021. 00176.
Grange, SK, Lee, JD, Drysdale, WS, Lewis, AC, Hueglin, C, Emmenegger, L, Carslaw, DC. 2021. COVID-19 lockdowns highlight a risk of increasing ozone pollution in European urban areas. Atmospheric Chemistry and Physics 21(5): 4169–4185. DOI: http://dx.doi.org/10.5194/acp-21-4169-2021. Available at https://acp.copernicus.org/articles/21/4169/2021/.
Guenther, AB, Jiang, X, Heald, CL, Sakulyanontvittaya, T, Duhl, T, Emmons, LK, Wang, X. 2012. The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions. Geoscientific Model Development 5(6): 1471–1492. DOI: http://dx.doi.org/10.5194/gmd-5-1471-2012. Available at https://www.geoscimodel-dev.net/5/1471/2012/.
Hannigan, JW, Ortega, I, Shams, SB, Blumenstock, T, Campbell, JE, Conway, S, Flood, V, Garcia, O, Griffith, D, Grutter, M, Hase, F, Jeseck, P, Jones, N, Mahieu, M, Makarova, M, De Mazière, M, Morino, I, Murata, I, Nagahama, T, Nakijima, H, Notholt, J, Palm, M, Poberovskii, A, Rettinger, M, Robinson, J, Röhling, AN, Schneider, M, Servais, C, Smale, D, Stremme, W, Strong, K, Sussmann, R, Te, Y, Vigouroux, C, Wizenberg, T. 2022. Global atmospheric OCS trend analysis from 22 NDACC stations. Journal of Geophysical Research: Atmospheres 127(4): e2021JD035764. DOI: http://dx.doi.org/10.1029/2021JD035764.
Hase, F, Hannigan, JW, Coffey, MT, Goldman, A, Höpfner, M, Jones, NB, Rinsland, CP, Wood, SW. 2004. Intercomparison of retrieval codes used for the analysis of high-resolution, ground-based FTIR measurements. Journal of Quantitative Spectroscopy and Radiative Transfer 87(1): 25–52. DOI: http://dx.doi.org/10.1016/j.jqsrt.2003.12.008.
Herzen, J, Lässig, F, Piazzetta, SG, Neuer, T, Tafti, L, Raille, G, Van Pottelbergh, T, Pasieka, M, Skrodzki, A, Huguenin, N, Dumonal, M, Koscisz, J, Bader, D, Gusset, F, Benheddi, M, Williamson, C, Kosinski, M, Petrik, M, Grosch, G. 2022. Darts: User-friendly modern machine learning for time series. The Journal of Machine Learning Research 23(1): 124:5442–124:5447.
Holt, CC. 2004. Forecasting seasonals and trends by exponentially weighted moving averages. International Journal of Forecasting 20(1): 5–10. DOI: http://dx.doi.org/10.1016/j.ijforecast.2003.09.015.
Kalnay, E, Kanamitsu, M, Kistler, R, Collins, W, Deaven, D, Gandin, L, Iredell, M, Saha, S, White, G, Woollen, J, Zhu, Y, Chelliah, M, Ebisuzaki, W, Higgins, W, Janowiak, J, Mo, KC, Ropelewski, C, Wang, J, Leetmaa, A, Reynolds, R, Jenne, R, Joseph, D. 1996. The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society 77(3): 437–472. DOI: http://dx.doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0. CO;2.
Kroll, JH, Heald, CL, Cappa, CD, Farmer, DK, Fry, JL, Murphy, JG, Steiner, AL. 2020. The complex chemical effects of COVID-19 shutdowns on air quality. Nature Chemistry 12(9): 777–779. DOI: http://dx.doi.org/10.1038/s41557-020-0535-z.
Laughner, JL, Neu, JL, Schimel, D, Wennberg, PO, Barsanti, K, Bowman, KW, Chatterjee, A, Croes, BE, Fitzmaurice, HL, Henze, DK, Kim, J, Kort, EA, Liu, Z, Miyazaki, K, Turner, AJ, Anenberg, S, Avise, J, Cao, H, Crisp, D, de Gouw, J, Eldering, A, Fyfe, JC, Goldberg, DL, Gurney, KR, Hasheminassab, S, Hopkins, F, Ivey, CE, Jones, DBA, Liu, J, Lovenduski, NS, Martin, RV, McKinley, GA, Ott, L, Poulter, B, Ru, M, Sander, SP, Swart, N, Yung, YL, Zeng, Z-C. 2021. Societal shifts due to COVID-19 reveal large-scale complexities and feedbacks between atmospheric chemistry and climate change. Proceedings of the National Academy of Sciences 118(46): e2109481118. DOI: http://dx.doi. org/10.1073/pnas.2109481118.
Levelt, PF, Stein Zweers, DC, Aben, I, Bauwens, M, Borsdorff, T, De Smedt, I, Eskes, HJ, Lerot, C, Loyola, DG, Romahn, F, Stavrakou, T, Theys, N, Van Roozendael, M, Veefkind, JP, Verhoelst, T. 2021. Air quality impacts of COVID-19 lockdown measures detected from space using high spatial resolution observations of multiple trace gases from Sentinel-5P/TROPOMI. Atmospheric Chemistry and Physics Discussions 2021: 1–53. DOI: http://dx.doi.org/10.5194/acp-2021-534.
Liu, X, Ma, PL, Wang, H, Tilmes, S, Singh, B, Easter, RC, Ghan, SJ, Rasch, PJ. 2016. Description and evaluation of a new four-mode version of the Modal Aerosol Module (MAM4) within version 5.3 of the Community Atmosphere Model. Geoscientific Model Development 9(2): 505–522. DOI: http://dx.doi.org/10.5194/gmd-9-505-2016. Available at https://gmd.copernicus.org/articles/9/505/2016/.
Liu, Y, Wang, T, Stavrakou, T, Elguindi, N, Doumbia, T, Granier, C, Bouarar, I, Gaubert, B, Brasseur, GP. 2021. Diverse response of surface ozone to COVID-19 lockdown in China. Science of The Total Environment 789: 147739. DOI: http://dx.doi.org/10.1016/j.scitotenv.2021.147739.
Manney, GL, Livesey, NJ, Santee, ML, Froidevaux, L, Lambert, A, Lawrence, ZD, Millán, LF, Neu, JL, Read, WG, Schwartz, MJ, Fuller, RA. 2020. Record-low arctic stratospheric ozone in 2020: MLS observations of chemical processes and comparisons with previous extreme winters. Geophysical Research Letters 47(16): e2020GL089063. DOI: http://dx.doi.org/10.1029/2020GL089063. Available at https://onlinelibrary.wiley.com/doi/pdf/10.1029/2020 GL089063.
McNorton, J, Bousserez, N, Agust-Panareda, A, Balsamo, G, Cantarello, L, Engelen, R, Huijnen, V, Inness, A, Kipling, Z, Parrington, M, Ribas, R. 2022. Quantification of methane emissions from hotspots and during COVID-19 using a global atmospheric inversion. Atmospheric Chemistry and Physics 22(9): 5961–5981. DOI: http://dx.doi.org/10.5194/ acp-22-5961-2022.
Mills, MJ, Schmidt, A, Easter, R, Solomon, S, Kinnison, DE, Ghan, SJ, Neely III, RR, Marsh, DR, Conley, A, Bardeen, CG, Gettelman, A. 2016. Global volcanic aerosol properties derived from emissions, 1990-2014, using CESM1(WACCM). Journal of Geophysical Research: Atmospheres 121(5): 2332–2348. DOI: http://dx.doi.org/10.1002/2015JD024290.
Miyazaki, K, Bowman, K, Sekiya, T, Takigawa, M, Neu, JL, Sudo, K, Osterman, G, Eskes, H. 2021. Global tropospheric ozone responses to reduced NOx emissions linked to the COVID-19 worldwide lockdowns. Science Advances 7(24): eabf7460. DOI: http://dx.doi.org/10.1126/sciadv.abf7460.
Nussbaumer, CM, Pozzer, A, Tadic, I, Röder, L, Obersteiner, F, Harder, H, Lelieveld, J, Fischer, H. 2022. Tropospheric ozone production and chemical regime analysis during the COVID-19 lockdown over Europe. Atmospheric Chemistry and Physics 22(9): 6151–6165. DOI: http://dx.doi.org/10.5194/acp-22-6151-2022. Available at https://acp.copernicus. org/articles/22/6151/2022/.
Ordóñez, C, Garrido-Perez, JM, Garca-Herrera, R. 2020. Early spring near-surface ozone in Europe during the COVID-19 shutdown: Meteorological effects outweigh emission changes. Science of The Total Environment 747: 141322. DOI: http://dx.doi.org/10.1016/j.scitotenv.2020.141322.
Ortega, I, Hannigan, J, Buchholz, R, Pfister, G. 2021. Long-term variability and source signature of gases emitted from oil & natural gas and cattle feedlot operations in the Colorado front range. Atmospheric Environment 263: 118663. DOI: http://dx.doi.org/10.1016/j.atmosenv.2021.118663.
Peng, S, Lin, X, Thompson, RL, Xi, Y, Liu, G, Hauglustaine, D, Lan, X, Poulter, B, Ramonet, M, Saunois, M, Yin, Y, Zhang, Z, Zheng, B, Ciais, P. 2022. Wetland emission and atmospheric sink changes explain methane growth in 2020. Nature 612(7940): 477–482. DOI: http://dx.doi.org/10.1038/s41586-022-05447-w.
Qu, Z, Jacob, DJ, Zhang, Y, Shen, L, Varon, DJ, Lu, X, Scarpelli, T, Bloom, A, Worden, J, Parker, RJ. 2022. Attribution of the 2020 surge in atmospheric methane by inverse analysis of GOSAT observations. Environmental Research Letters 17(9): 094003. DOI: http://dx.doi.org/10.1088/1748-9326/ac8754.
Reifenberg, SF, Martin, A, Kohl, M, Bacer, S, Hamryszczak, Z, Tadic, I, Röder, L, Crowley, DJ, Fischer, H, Kaiser, K, Schneider, J, Dörich, R, Crowley, JN, Tomsche, L, Marsing, A, Voigt, C, Zahn, A, Pöhlker, C, Holanda, BA, Krüger, O, Pöschl, U, Pöhlker, M, Jöckel, P, Dorf, M, Schumann, U, Williams, J, Bohn, B, Curtius, J, Harder, H, Schlager, H, Lelieveld, J, Pozzer, A. 2022. Numerical simulation of the impact of COVID-19 lockdown on tropospheric composition and aerosol radiative forcing in Europe. Atmospheric Chemistry and Physics 22(16): 10901–10917. DOI: http://dx.doi.org/10.5194/acp-22-10901-2022. Available at https://acp.copernicus.org/articles/22/10901/2022/.
Rodgers, CD. 2000. Inverse methods for atmospheric sounding: Theory and practice. Singapore, Singapore: World Scientific.
Rodgers, CD, Connor, BJ. 2003. Intercomparison of remote sounding instruments. Journal of Geophysical Research: Atmospheres 108: 4116. DOI: http://dx.doi.org/10.1029/2002JD002299.
Salawitch, RJ, McBride, LA. 2022. Australian wildfires depleted the ozone layer. Science 378(6622): 829–830. DOI: http://dx.doi.org/10.1126/science. add2056.
Sha, MK, Langerock, B, Blavier, JFL, Blumenstock, T, Borsdorff, T, Buschmann, M, Dehn, A, De Mazière, M, Deutscher, NM, Feist, DG, García, OE, Griffith, DWT, Grutter, M, Hannigan, JW, Hase, F, Heikkinen, P, Hermans, C, Iraci, LT, Jeseck, P, Jones, N, Kivi, R, Kumps, N, Landgraf, J, Lorente, A, Mahieu, E, Makarova, MV, Mellqvist, J, Metzger, J-M, Morino, I, Nagahama, T, Notholt, J, Ohyama, H, Ortega, I, Palm, M, Petri, C, Pollard, DF, Rettinger, M, Robinson, J, Roche, S, Roehl, CM, Röhling, AN, Rousogenous, C, Schneider, M, Shiomi, K, Smale, D, Stremme, W, Strong, K, Sussmann, R, Té, Y, Uchino, O, Velazco, VA, Vigouroux, C, Vrekoussis, M, Wang, P, Warneke, T, Wizenberg, T, Wunch, D, Yamanouchi, S, Yang, Y, Zhou, M. 2021. Validation of methane and carbon monoxide from Sentinel-5 Precursor using TCCON and NDACC-IRWG stations. Atmospheric Measurement Techniques 14(9): 6249–6304. DOI: http://dx. doi.org/10.5194/amt-14-6249-2021.
Sokhi, RS, Singh, V, Querol, X, Finardi, S, Targino, AC, de Fatima Andrade, M, Pavlovic, R, Garland, RM, Massagué, J, Kong, S, Baklanov, A, Ren, L, Tarasova, O, Carmichael, G, Peuch, V-H, Anand, V, Arbilla, G, Badali, K, Beig, G, Belalcazar, LC, Bolignano, A, Brimblecombe, P, Camacho, P, Casallas, A, Charland, J-P, Choi, J, Chourdakis, E, Coll, I, Collins, M, Cyrys, J, da Silva, CM, Giosa, ADD, Leo, AD, Ferro, C, Gavidia-Calderon, M, Gayen, A, Ginzburg, A, Godefroy, F, Gonzalez, YA, Guevara-Luna, M, Haque, SkM, Havenga, H, Herod, D, Hõrrak, U, Hussein, T, Ibarra, S, Jaimes, M, Kaasik, M, Khaiwal, R, Kim, J, Kousa, A, Kukkonen, J, Kulmala, M, Kuula, J, Violette, NL, Lanzani, G, Liu, X, MacDougall, S, Manseau, PM, Marchegiani, G, McDonald, B, Mishra, SV, Molina, LT, Mooibroek, D, Mor, S, Moussiopoulos, N, Murena, F, Niemi, JV, Noe, S, Nogueira, T, Norman, M, Pérez-Camaño, JL, Petäjä, T, Piketh, S, Rathod, A, Reid, K, Retama, A, Rivera, O, Rojas, NY, Rojas-Quincho, JP, José, RS, Sánchez, O, Seguel, RJ, Sillanpää, S, Su, Y, Tapper, N, Terrazas, A, Timonen, H, Toscano, D, Tsegas, G, Velders, GJM, Vlachokostas, C, von Schneidemesser, E, Rajasree, VPM, Yadav, R, Zalakeviciute, R, Zavala, M. 2021. A global observational analysis to understand changes in air quality during exceptionally low anthropogenic emission conditions. Environment International 157: 106818. DOI: http://dx.doi.org/10.1016/j.envint.2021.106818.
Soulie, A, Granier, C, Darras, S, Doumbia, T, Guevara, M, Jalkanen, J-P, Keita, S, Liousse, C, Crippa, M, Guizzardi, D, Smith, S. 2023. Global anthropogenic emissions (CAMS-GLOB-ANT) for the copernicus atmosphere monitoring service air quality forecasting and reanalyses. Earth System Science Data, submitted, under review.
Stavrakou, T, Müller, JF, Bauwens, M, Doumbia, T, Elguindi, N, Darras, S, Granier, C, Smedt, ID, Lerot, C, Roozendael, MV, Franco, B, Clarisse, L, Clerbaux, C, Coheur, P-F, Liu, Y, Wang, T, Shi, X, Gaubert, B, Tilmes, S, Brasseur, G. 2021. Atmospheric impacts of COVID-19 on NOx and VOC levels over China based on TROPOMI and IASI Satellite Data and Modeling. Atmosphere 12(8). DOI: http://dx.doi.org/10.3390/atmos12080946.
Steinbrecht, W, Kubistin, D, Plass-Dülmer, C, Davies, J, Tarasick, DW, von der Gathen, P, Deckelmann, H, Jepsen, N, Kivi, R, Lyall, N, Palm, M, Notholt, J, Kois, B, Oelsner, P, Allaart, M, Piters, A, Gill, M, Malderen, RV, Delcloo, AW, Sussmann, R, Mahieu, E, Servais, C, Romanens, G, Stübi, R, Ancellet, G, Godin-Beekmann, S, Yamanouchi, S, Strong, K, Johnson, B, Cullis, P, Petropavlovskikh, I, Hannigan, JW, Hernandez, J-L, Rodriguez, AD, Nakano, T, Chouza, F, Leblanc, T, Torres, C, Garcia, O, Röhling, AN, Schneider, M, Blumenstock, T, Tully, M, Paton-Walsh, C, Jones, N, Querel, R, Strahan, S, Stauffer, RM, Thompson, AM, Inness, A, Engelen, R, Chang, K-L, Cooper, OR. 2021. COVID-19 crisis reduces free tropospheric ozone across the northern hemisphere. Geophysical Research Letters 48(5): e2020GL091987. DOI: http://dx.doi.org/10.1029/ 2020GL091987.
Stevenson, DS, Derwent, RG, Wild, O, Collins, WJ. 2022. COVID-19 lockdown emission reductions have the potential to explain over half of the coincident increase in global atmospheric methane. Atmospheric Chemistry and Physics 22(21): 14243–14252. DOI: http://dx.doi.org/10.5194/acp-22-14243-2022.
Sun, W, Zhu, L, De Smedt, I, Bai, B, Pu, D, Chen, Y, Shu, L, Wang, D, Fu, T-M, Wang, X, Yang, X. 2021. Global significant changes in formaldehyde (HCHO) columns observed from space at the early stage of the COVID-19 pandemic. Geophysical Research Letters 48(4): 2e020GL091265. DOI: http://dx.doi.org/10.1029/2020GL091265.
Viatte, C, Strong, K, Walker, KA, Drummond, JR. 2014. Five years of CO, HCN, C2H6, C2H2, CH3OH, HCOOH and H2CO total columns measured in the Canadian high Arctic. Atmospheric Measurement Techniques 7(6): 1547–1570. DOI: http://dx.doi.org/10.5194/ amt-7-1547-2014.
Vigouroux, C, Bauer Aquino, CA, Bauwens, M, Becker, C, Blumenstock, T, De Mazière, M, García, O, Grutter, M, Guarin, C, Hannigan, J, Hase, F, Jones, N, Kivi, R, Koshelev, D, Langerock, B, Lutsch, E, Makarova, M, Metzger, J-M, Müller, J-F, Notholt, J, Ortega, I, Palm, M, Paton-Walsh, C, Poberovskii, A, Rettinger, M, Robinson, J, Smale, D, Stavrakou, T, Stremme, W, Strong, K, Sussmann, R, Té, Y, Toon, G. 2018. NDACC harmonized formaldehyde time series from 21 FTIR stations covering a wide range of column abundances. Atmospheric Measurement Techniques 11(9): 5049–5073. DOI: http://dx.doi.org/10.5194/amt-11-5049-2018.
Vigouroux, C, Blumenstock, T, Coffey, M, Errera, Q, Garca, O, Jones, NB, Hannigan, JW, Hase, F, Liley, B, Mahieu, E, Mellqvist, J, Notholt, J, Palm, M, Persson, G, Schneider, M, Servais, C, Smale, D, Thölix, L, De Mazière, M. 2015. Trends of ozone total columns and vertical distribution from FTIR observations at eight NDACC stations around the globe. Atmospheric Chemistry and Physics 15(6): 2915–2933. DOI: http://dx.doi.org/10.5194/acp-15-2915-2015.
Vigouroux, C, Stavrakou, T, Whaley, C, Dils, B, Duflot, V, Hermans, C, Kumps, N, Metzger, J-M, Scolas, F, Vanhaelewyn, G, Müller, J-F, Jones, DBA, Li, Q, De Mazière, M. 2012. FTIR time-series of biomass burning products (HCN, C2H6, C2H2, CH3OH, and HCOOH) at Reunion Island (21 S, 55 E) and comparisons with model data. Atmospheric Chemistry and Physics 12(21): 10367–10385. DOI: http://dx.doi.org/10.5194/acp-12-10367-2012.
Worden, HM, Deeter, MN, Frankenberg, C, George, M, Nichitiu, F, Worden, J, Aben, I, Bowman, KW, Clerbaux, C, Coheur, PF, de Laat, ATJ, Detweiler, R, Drummond, JR, Edwards, DP, Gille, JC, Hurtmans, D, Luo, M, Martínez-Alonso, S, Massie, S, Pfister, G, Warner, JX. 2013. Decadal record of satellite carbon monoxide observations. Atmospheric Chemistry and Physics 13(2): 837–850. DOI: http://dx.doi.org/10.5194/acp-13-837-2013.
Xiao, Y, Jacob, DJ, Turquety, S. 2007. Atmospheric acetylene and its relationship with CO as an indicator of air mass age. Journal of Geophysical Research: Atmospheres 112(D12). DOI: http://dx.doi.org/10.1029/ 2006JD008268. Available at https://onlinelibrary.wiley.com/doi/abs/10.1029/2006JD008268.
Zhang, K, Liu, Z, Zhang, X, Li, Q, Jensen, A, Tan, W, Huang, L, Wang, Y, de Gouw, J, Li, L. 2022. Insights into the significant increase in ozone during COVID-19 in a typical urban city of China. Atmospheric Chemistry and Physics 22(7): 4853–4866. DOI: http://dx.doi.org/10.5194/acp-22-4853-2022. Available at https://acp.copernicus.org/articles/22/ 4853/2022/.
Zhao, Y, Saunois, M, Bousquet, P, Lin, X, Berchet, A, Hegglin, MI, Canadell, JG, Jackson, RB, Deushi, M, Jöckel, P, Kinnison, D, Kirner, O, Strode, S, Tilmes, S, Dlugokencky, EJ, Zheng, B. 2020. On the role of trend and variability in the hydroxyl radical (OH) in the global methane budget. Atmospheric Chemistry and Physics 20(21): 13011–13022. DOI: http://dx.doi.org/10.5194/acp-20-13011-2020.
Zhou, M, Jiang, J, Langerock, B, Dils, B, Sha, MK, De Mazière, M. 2021. Change of CO concentration due to the COVID-19 lockdown in China observed by surface and satellite observations. Remote Sensing 13(6). DOI: http://dx.doi.org/10.3390/rs13061129.
Ziemke, JR, Kramarova, NA, Frith, SM, Huang, LK, Haffner, DP, Wargan, K, Lamsal, LN, Labow, GJ, McPeters, RD, Bhartia, PK. 2022. NASA satellite measurements show global-scale reductions in free tropospheric ozone in 2020 and again in 2021 during COVID-19. Geophysical Research Letters 49(15): e2022GL098712. DOI: http://dx.doi.org/10.1029/ 2022GL098712. Available at https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/ 2022GL098712.