Agricultural and Biological Sciences (all); Immunology and Microbiology (all); Evolutionary biology; transposon; DDE
Abstract :
[en] DDE Transposons have been recruited at least four times as site-specific recombination activating gene allowing programmed DNA elimination in eukaryotes. The described cases are RAG in jawed vertebrates, Kat 1 and Alpha 3 in the Kluyveromyces lactis yeast and Piggymac/TPB1 TPB2 and TPB6 in ciliates. The domesticated RAG is the most known case. It constitutes the enzymatic core of the Jawed vertebrates V(D)J recombination machinery. It directs random assembly and joining of gene segments during the development of B and T cells helping in the generation of the enormous gene diversity encoding antibodies or T cell receptors. It was shown in the case of RAG that the shift from DDE transposon to site-specific recombination activating gene is an evolutionary phenomenon that did not require dramatic changes. This explainswhy the co-option ofDDEtransposon as site-specific recombination activating gene can occur in a convergent manner. As numerous genes coding for DDE transposases are widespread through numerous members of the life tree, it is expected that several of them might correspond to domesticated transposons involved in programmed DNA elimination and maybe in the generation of receptor diversity. The domestication of DDE transposon could have been and still be of an extreme importance for organisms' evolution.
Helou, Laura ; Université de Liège - ULiège > Département des sciences cliniques ; UMR INRAE 0085, CNRS 7247, PRC, Centre INRAE Val de Loire, Nouzilly, France
Abe K, Shimizu SY, Tsuda S, Sato T (2017a) A novel non prophage(-like) gene-intervening element within gerE that is reconstituted during sporulation in Bacillus cereus ATCC10987. Sci Rep 7:11426. https://doi.org/10.1038/s41598-017-11796-8
Abe K, Takamatsu T, Sato T (2017b) Mechanism of bacterial gene rearrangement: SprA-catalyzed precise DNA recombination and its directionality control by SprB ensure the gene rearrangement and stable expression of spsM during sporulation in Bacillus subtilis. Nucleic Acids Res 45:66696683. https://doi.org/10.1093/nar/gkx466
Alt FW, Schwer B (2018) DNA double-strand breaks as drivers of neural genomic change, function, and disease. DNA Repair (Amst) 71:158-163
Arakawa H, HauschiLd J, Buerstedde JM (2002) Requirement of the activation-induced deaminase (AID) gene for immunoglobulin gene conversion. Science (80-) 295:1301-1306. https://doi.org/10.1126/science.1067308
Arnaoty A, Pitard B, Bateau B, Bigot Y, Lecomte T (2012) Novel approach for the development of mew antibodies directed against transposase-derived proteins encoded by human neogenes. Methods Mol Biol 859:293-305. https://doi.org/10.1007/978-1-61779-603-6_17
Aziz RK, Breitbart M, Edwards RA (2010) Transposases are the most abundant, most ubiquitous genes in nature. Nucleic Acids Res 38:4207-4217. https://doi.org/10.1093/nar/gkq140
Babakhani S, Oloomi M (2018) Transposons: the agents of antibiotic resistance in bacteria. J Basic Microbiol 58:905-917
Barsoum E, Martinez P, Åström SU (2010) a3, a transposable element that promotes host sexual reproduction. Genes Dev 24:33-44. https://doi.org/10.1101/gad.557310
Baudry C, Malinsky S, Restituito M, Kapusta A, Rosa S, Meyer E, Bétermier M (2009) PiggyMac, a domesticated piggyBac transposase involved in programmed genome rearrangements in the ciliate Paramecium tetraurelia. Genes Dev 23:2478-2483. https://doi.org/10.1101/gad.547309
Boehm T, Hirano M, Holland SJ, Das S, Schorpp M, Cooper MD (2018) Evolution of alternative adaptive immune systems in vertebrates. Annu Rev Immunol 36:19-42. https://doi.org/10.1146/annurev-immunol-042617-053028
Bouallègue M, Rouault JD, Hua-Van A, Makni M, Capy P (2017) Molecular evolution of piggyBac superfamily: from selfishness to domestication. Genome Biol Evol 9:323-339. https://doi.org/10.1093/gbe/evw292
Cheng CY, Young JM, Lin CYG, Chao JL, Malik HS, Yao MC (2016) The piggyBac transposonderived genes TPB1 and TPB6 mediate essential transposon-like excision during the developmental rearrangement of key genes in Tetrahymena thermophila. Genes Dev 30:2724-2736. https://doi.org/10.1101/gad.290460.116
El Baidouri M, Panaud O (2015) Horizontal transfers and the new model of TE-driven genome evolution in Eukaryotes. In: Evolutionary biology: biodiversification from genotype to phenotype. Springer International Publishing, pp 77-92
Feiner R, Argov T, Rabinovich L, Sigal N, Borovok I, Herskovits AA (2015) A new perspective on lysogeny: prophages as active regulatory switches of bacteria. Nat Rev Microbiol 13:641-650
Feschotte C (2008) Transposable elements and the evolution of regulatory networks. Nat Rev Genet 9:397-405
Flajnik MF (2016) Evidence of G.O. D'. s miracle: unearthing a RAG transposon. Cell 166:11-12
Henssen AG, Henaff E, Jiang E, Eisenberg AR, Carson JR, Villasante CM, Ray M, Still E, Burns M, Gandara J, Feschotte C, Mason CE, Kentsis A (2015) Genomic DNA transposition induced by human PGBD5. Elife. https://doi.org/10.7554/elife.10565
Henssen AG, Jiang E, Zhuang J, Pinello L, Socci ND, Koche R, Gonen M, Villasante CM, Armstrong SA, Bauer DE, Weng Z, Kentsis A (2016) Forward genetic screen of human transposase genomic rearrangements. BMC Genom 17:548. https://doi.org/10.1186/s12864-016-2877-x
Henssen AG, Koche R, Zhuang J, Jiang E, Reed C, Eisenberg A, Still E, Macarthur IC, Rodríguez-Fos E, Gonzalez S, Puiggròs M, Blackford AN, Mason CE, De Stanchina E, Gönen M, Emde AK, Shah M, Arora K, Reeves C, Socci ND, Perlman E, Antonescu CR, Roberts CWM, Steen H, Mullen E, Jackson SP, Torrents D, Weng Z, Armstrong SA, Kentsis A (2017) PGBD5 promotes site-specific oncogenic mutations in human tumors. Nat Genet 49:1005-1014. https://doi.org/10.1038/ng.3866
Hilton JA, Meeks JC, Zehr JP (2016) Surveying DNA elements within functional genes of heterocyst-forming cyanobacteria. PLoS One. https://doi.org/10.1371/journal.pone.0156034
Hoen DR, Bureau TE (2015) Discovery of novel genes derived from transposable elements using integrative genomic analysis. Mol Biol Evol 32:1487-1506. https://doi.org/10.1093/molbev/msv042
Hu J, Meyers RM, Dong J, Panchakshari RA, Alt FW, Frock RL (2016) Detecting DNA doublestranded breaks in mammalian genomes by linear amplification-mediated high-throughput genome-wide translocation sequencing. Nat Protoc 11:853-871. https://doi.org/10.1038/nprot.2016.043
Huang S, Tao X, Yuan S, Zhang Y, Li P, Beilinson HA, Zhang Y, Yu W, Pontarotti P, Escriva H, Le Petillon Y, Liu X, Chen S, Schatz DG, Xu A (2016) Discovery of an active RAG transposon illuminates the origins of V(D)J recombination. Cell 166:102-114. https://doi.org/10.1016Zj.cell.2016.05.032
Jangam D, Feschotte C, Betrán E (2017) Transposable element domestication as an adaptation to evolutionary conflicts. Trends Genet 33:817-831
Janeway CA, Travers P, Walport M, Shlomchik MJ (2001) Immunobiology: the immune system in health and disease. 5th edn. Garland Science
Jeffares DC, Tomiczek B, Sojo V, dos Reis M (2015) A beginners guide to estimating the nonsynonymous to synonymous rate ratio of all protein-coding genes in a genome. Methods Mol Biol 1201:65-90. https://doi.org/10.1007Z978-1-4939-1438-8_4
Kapitonov VV, Jurka J (2005) RAG1 core and V(D)J recombination signal sequences were derived from Transib transposons. PLoS Biol 3:0998-1011. https://doi.orgZ10.1371Zjournal.pbio.0030181
Keeling PJ, Roger AJ (1995) The selfish pursuit of sex. Nature 375:283
Klar AJS, Ishikawa K, Moore S (2014) A unique DNA recombination mechanism of the matingZcelltype switching of fission yeasts: a review. Microbiol Spectr. https://doi.orgZ10.1128Zmicrobiolspec.mdna3-0003-2014
Koufopanou V, Burt A (2005) Degeneration and domestication of a selfish gene in yeast: molecular evolution versus site-directed mutagenesis. Mol Biol Evol 22:1535-1538. https://doi.orgZ10.1093ZmolbevZmsi149
Majumdar S, Singh A, Rio DC (2013) The human THAP9 gene encodes an active P-element DNA transposase. Science (80-) 339:446-448. https://doi.orgZ10.1126Zscience.1231789
McDonald MC, Taranto AP, Hill E, Schwessinger B, Liu Z, Simpfendorfer S, Milgate A, Solomon PS (2019) Transposon-mediated horizontal transfer of the host-specific virulence protein ToxA between three fungal wheat pathogens. MBio. https://doi.orgZ10.1128Zmbio.01515-19
McInerney JO, Pisani D, Bapteste E, O'Connell MJ (2011) The public goods hypothesis for the evolution of life on Earth. Biol Direct 6:41. https://doi.orgZ10.1186Z1745-6150-6-41
Morales Poole JR, Huang SF, Xu A, Bayet J, Pontarotti P (2017) The RAG transposon is active through the deuterostome evolution and domesticated in jawed vertebrates. Immunogenetics 69:391-400. https://doi.orgZ10.1007Zs00251-017-0979-5
Nowacki M, Higgins BP, Maquilan GM, Swart EC, Doak TG, Landweber LF (2009) A functional role for transposases in a large eukaryotic genome. Science 324:935-938
Nowacki M, Shetty K, Landweber LF (2011) RNA-mediated epigenetic programming of genome rearrangements. Annu Rev Genomics Hum Genet 12:367-389
Park PJ (2009) ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet 10:669-680
Pavelitz T, Gray LT, Padilla SL, Bailey AD, Weiner AM (2013) PGBD5: a neural-specific introncontaining piggyBac transposase domesticated over 500 million years ago and conserved from cephalochordates to humans. Mob DNA 4:23. https://doi.orgZ10.1186Z1759-8753-4-23
Piégu B, Bire S, Arensburger P, Bigot Y (2015) A survey of transposable element classification systems--a call for a fundamental update to meet the challenge of their diversity and complexity. Mol Phylogenet Evol 86:90-109
Pontarotti P, Hue I (2016) Road map to study convergent evolution: A proposition for evolutionary systems biology approaches. Evolutionary biology: convergent evolution, evolution of complex traits, concepts and methods. Springer International Publishing, Heidelberg, pp 3-21
Rajaei N, Chiruvella KK, Lin F, Åström SU (2014) Domesticated transposase Kat1 and its fossil imprints induce sexual differentiation in yeast. Proc Natl Acad Sci USA 111:15491-15496. https://doi.orgZ10.1073Zpnas.1406027111
Rascol VL, Levasseur A, Chabrol O, Grusea S, Gouret P, Danchin EGJ, Pontarotti P (2009) CASSIOPE: an expert system for conserved regions searches. BMC Bioinf 10:284. https://doi.org/10.1186/1471-2105-10-284
Sinzelle L, Izsvák Z, Ivics Z (2009) Molecular domestication of transposable elements: from detrimental parasites to useful host genes. Cell Mol Life Sci 66:1073-1093
Teng G, Schatz DG (2015) Regulation and evolution of the RAG recombinase. In: Advances in immunology. Academic Press Inc, pp 1-39
Wang J, Davis RE (2014) Programmed DNA elimination in multicellular organisms. Curr Opin Genet Dev 27:26-34
Wei PC, Chang AN, Kao J, Du Z, Meyers RM, Alt FW, Schwer B (2016) Long neural genes harbor recurrent DNA break clusters in neural stem/progenitor cells. Cell 164:644-655. https://doi.org/10.1016/j.cell.2015.12.039
Yu K, Lieber MR (2019) Current insights into the mechanism of mammalian immunoglobulin class switch recombination. Crit Rev Biochem Mol Biol 54:333-351
Zhang Y, Cheng TC, Huang G, Lu Q, Surleac MD, Mandell JD, Pontarotti P, Petrescu AJ, Xu A, Xiong Y, Schatz DG (2019) Transposon molecular domestication and the evolution of the RAG recombinase. Nature 569:79-84. https://doi.org/10.1038/s41586-019-1093-7
Zufall RA, Robinson T, Katz LA (2005) Evolution of developmentally regulated genome rearrangements in eukaryotes. J Exp Zool Part B Mol Dev Evol 304:448-455