[1] Adam, M.P., Schelley, S., Gallagher, R., Brady, A.N., Barr, K., Blumberg, B., Shieh, J.T., Graham, J., Slavotinek, A., Martin, M., Keppler-Noreuil, K., Storm, A.L., Hudgins, L., Clinical features and management issues in Mowat-Wilson syndrome. Am. J. Med. Genet. A 140:24 (2006), 2730–2741.
[2] Aponte, Y., Bischofberger, J., Jonas, P., Efficient Ca2+ buffering in fast-spiking basket cells of rat hippocampus. J. Physiol. 586:8 (2008), 2061–2075.
[3] Ambrósio, A.F., Silva, A.P., Malva, J.O., Mesquita, J.F., Carvalho, A.P., Carvalho, C.M., Role of desensitization of AMPA receptors on the neuronal viability and on the [Ca2+]i changes in cultured rat hippocampal neurons. Eur. J. Neurosci. 12:6 (2000), 2021–2031.
[4] Berezhnov, A.V., Kononov, A.V., Fedotova, E.I., Zinchenko, V.P., Image analysis applications for characterization of ionotropic glutamate receptor ligands in cultured neurons. Biochem. (Moscow) Supp. Series A: Membr. Cell Biol. 30:3 (2013), 179–188.
[6] van den Berghe, V., Stappers, E., Vandesande, B., Dimidschstein, J., Kroes, R., Francis, A., Conidi, A., Lesage, F., Dries, R., Cazzola, S., Berx, G., Kessaris, N., Vanderhaeghen, P., van Ijcken, W., Grosveld, F.G., Goossens, S., Haigh, J.J., Fishell, G., Goffinet, A., Aerts, S., Huylebroeck, D., Seuntjens, E., Directed migration of cortical interneurons depends on the cell-autonomous action of Sip1. Neuron 77:1 (2013), 70–82.
[7] Burnashev, N., Rozov, A., Presynaptic Ca2+ dynamics, Ca2+ buffers and synaptic efficacy. Cell Calcium 37:5 (2005), 489–495.
[8] Bissonnette, J.M., Schaevitz, L.R., Knopp, S.J., Zhou, Z., Respiratory phenotypes are distinctly affected in mice with common Rett syndrome mutations MeCP2 T158A and R168X. Neuroscience 267 (2014), 166–176.
[9] Choi, D.W., Glutamate neurotoxicity in cortical cell culture is calcium dependent. Neurosci. Lett. 58:3 (1985), 293–297.
[10] Clements, J.D., Feltz, A., Sahara, Y., Westbrook, G.L., Activation kinetics of AMPA receptor channels reveal the number of functional agonist binding sites. J. Neurosci. 18:1 (1998), 119–127.
[11] Cobb, S.R., Buhl, E.H., Halasy, K., Paulsen, O., Somogyi, P., Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature 378:6552 (1995), 75–78.
[12] Flint, A.C., Dammerman, R.S., Kriegstein, A.R., Endogenous activation of metabotropic glutamate receptors in neocortical development causes neuronal calcium oscillations. PNAS 96:21 (1999), 12144–12149.
[13] Friedman, L.K., Calcium. A role for neuroprotection and sustained adaptation. Mol. Interv.(6), 2006, 315–329.
[17] Goebbels, S., Bormuth, I., Bode, U., Hermanson, O., Schwab, M.H., Nave, K.A., Genetic targeting of principal neurons in neocortex and hippocampus of NEX-Cre mice. Genesis 44:12 (2006), 611–621.
[18] Higashi, Y., Maruhashi, M., Nelles, L., Van de Putte, T., Verschueren, K., Miyoshi, T., Yoshimoto, A., Kondoh, H., Huylebroeck, D., Generation of the floxed allele of the SIP1 (Smad-interacting protein 1) gene for Cre-mediated conditional knockout in the mouse. Genesis 32:2 (2002), 82–84.
[19] Hilgenberg, L.G., Smith, M.A., Preparation of dissociated mouse cortical neuron cultures. J. Vis. Exp., 10, 2007, 562.
[20] Hollmann, M., O'Shea-Greenfield, A., Rogers, S.W., Heinemann, S., Cloning by functional expression of a member of the glutamate receptor family. Nature 342:6250 (1989), 643–648.
[21] Kortenbruck, G., Berger, E., Speckmann, E.J., Musshoff, U., RNA editing at the Q/R site for the glutamate receptor subunits GLUR2, GLUR5, and GLUR6 in hippocampus and temporal cortex from epileptic patients. Neurobiol. Dis. 8:3 (2001), 459–468.
[22] Lodge, D., The history of the pharmacology and cloning of ionotropic glutamate receptors. Neuropharmacology 56:1 (2009), 6–21.
[23] Maccaferri, G., Roberts, J.D., Szucs, P., Cottingham, C.A., Somogyi, P., Cell surface domain specific postsynaptic currents evoked by identified GABAergic neurones in rat hippocampus in vitro. J. Physiol. 524 (2000), 91–116.
[24] С. McBain, J., DiChiara, T.J., Kauer, J.A., Activation of metabotropic glutamate receptors differentially affects two classes of hippocampal interneurons and potentiates excitatory synaptic transmission. J. Neurosci. 14:7 (1994), 4433–4445.
[25] McKinsey, G.L., Lindtner, S., Trzcinski, B., Visel, A., Pennacchio, L.A., Huylebroeck, D., Higashi, Y., Rubenstein, J.L., Dlx1&2-dependent expression of Zfhx1b (Sip1, Zeb2) regulates the fate switch between cortical and striatal interneurons. Neuron 77:1 (2013), 83–98.
[26] Miquelajauregui, A., Van de Putte, T., Polyakov, A., Nityanandam, A., Boppana, S., Seuntjens, E., Karabinos, A., Higashi, Y., Huylebroeck, D., Tarabykin, V., Smad-interacting protein-1 (Zfhx1b) acts upstream of Wnt signaling in the mouse hippocampus and controls its formation. PNAS 104:31 (2007), 12919–12924.
[27] Nityanandam, A., Parthasarathy, S., Tarabykin, V., Postnatal subventricular zone of the neocortex contributes GFAP+ cells to the rostral migratory stream under the control of Sip1. Dev. Biol. 366:2 (2012), 341–356.
[28] Noh, K.M., Yokota, H., Mashiko, T., Castillo, P.E., Zukin, R.S., Bennett, M.V.L., Blockade of calcium-permeable AMPA receptors protects hippocampal neurons against global ischemia-induced death. PNAS 102:34 (2005), 12230–12235.
[29] Orduz, D., Bischop, D.P., Schwaller, B., Schiffmann, S.N., Gall, D., Parvalbumin tunes spike-timing and efferent short-term plasticity in striatal fast spiking interneurons. J. Physiol. 591:13 (2013), 3215–3232.
[30] Palmer, C.L., Cotton, L., Henley, J.M., The molecular pharmacology and cell biology of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Pharmacol. Rev. 57:2 (2005), 253–277.
[31] Perkinton, M.S., Sihra, T.S., Williams, R.J., Ca2+-permeable AMPA-receptors induce phosphorylation of cAMP response element-binding protein through a phosphatidylinositol 3-kinase-dependent stimulation of the mitogen-activated protein kinase signaling cascade in neurons. J. Neurosci. 19:14 (1999), 5861–5874.
[32] Platt, S.R., The role of glutamate in central nervous system health and disease. Vet. J. 173:2 (2007), 278–286.
[33] Powell, E.M., Interneuron development and epilepsy: early genetic defects cause long-term consequences in seizuresand susceptibility. Epilepsy Curr. 13:4 (2013), 172–176.
[34] Sailer, A., Swanson, G.T., Pérez–Otaño, I., O'Leary, L., Malkmus, S.A., Dyck, R.H., Dickinson–Anson, H., Schiffer, H.H., Maron, C., Yaksh, T.L., Gage, F.H., O'Gorman, S., Heinemann, S.F., Generation and analysis of GluR5(Q636R) kainate receptor mutant mice. J. Neurosci. 19:20 (1999), 8757–8764.
[35] Seeburg, P.H., The TINS/TiPS Lecture. The molecular biology of mammalian glutamate receptor channels. Trends Neurosci., 1993.
[36] Seuntjens, E., Nityanandam, A., Miquelajauregui, A., Debruyn, J., Stryjewska, A., Goebbels, S., Nave, K.A., Huylebroeck, D., Tarabykin, V., Sip1 regulates sequential fate decisions by feedback signaling from postmitotic neurons to progenitors. Nat. Neurosci. 12:11 (2009), 1373–1380.
[37] Silva, A.P., Malva, J.O., Ambrosio, A.F., Salgado, A.J., Carvalho, A.P., Carvalho, C.M., Role of kainate receptor activation and desensitization on the [Ca2 +]i changes in cultured rat hippocampal neurons. J. Neurosci. Res. 65:5 (2001), 378–386.
[38] Turovsky, E.A., Turovskaya, M.V., Kononov, A.V., Zinchenko, V.P., Short-term episodes of hypoxia induce posthypoxic hyperexcitability and selective death of GABAergic hippocampal neurons. Exp. Neurol. 250 (2013), 1–7.
[39] Turovsky, E., Karagiannis, A., Abdala, A.P., Gourine, A.V., Impaired CO2 sensitivity of astrocytes in a mouse model of Rett syndrome. J. Physiol. 593:14 (2015), 3159–3168.
[40] Verschueren, K., Remacle, J.E., Collart, C., Kraft, H., Baker, B.S., Tylzanowski, P., Nelles, L., Wuytens, G., Su, M.T., Bodmer, R., Smith, J.C., Huylebroeck, D., SIP1, a novel zinc finger/homeodomain repressor, interacts with Smad proteins and binds to 5'-CACCT sequences in candidate target genes. J. Biol. Chem. 274:29 (1999), 20489–20498.
[41] Vanhoutte, P., Bading, H., Opposing roles of synaptic and extrasynaptic NMDA receptors in neuronal calcium signaling and BDNF gene regulation. Curr. Opin. Neurobiol. 13:3 (2003), 366–371.
[42] Vissel, B., Royle, G.A., Christie, B.R., Schiffer, H.H., Ghetti, A., Tritto, T., Perez—Otano, I., Radcliffe, R.A., Seamans, J., Sejnowski, T., Wehner, J.M., Collins, A.C., O'Gorman, S., Heinemann, S.F., The Role of RNA editing of kainate receptors in synaptic plasticity and seizures. Neuron 29:1 (2001), 217–227.
[43] Weng, Q., Chen, Y., Wang, H., Xu, X., Yang, B., He, Q., Shou, W., Chen, Y., Higashi, Y., van den Berghe, V., Seuntjens, E., Kernie, S.G., Bukshpun, P., Sherr, E.H., Huylebroeck, D., Lu, Q.R., Dual-mode modulation of Smad signaling by Smad-interacting protein Sip1 is required for myelination in the central nervous system. Neuron 73:4 (2012), 713–728.
[44] Winklbauer, R., Medina, A., Swain, R.K., Steinbeisser, H., Frizzled-7 signalling controls tissue separation during Xenopus gastrulation. Nature 413:6858 (2001), 856–860.
[45] Y.Yang, 45, Wnt signaling in development and disease. Cell Biosci., 2(1), 2012, 14.
[46] Yuste, R., Majewska, A., Holthoff, K., From form to function: calcium compartmentalization in dendritic spines. Nat. Neurosci. 3:7 (2000), 653–659.
[47] Zhou, X., Hollern, D., Liao, J., Andrechek, E., Wang, H., NMDA receptor-mediated excitotoxicity depends on the coactivation of synaptic and extrasynapticreceptors. Cell. Death. Dis., 4, 2013, 560.
[48] Zemke, D., Smith, J.L., Reeves, M.J., Majid, A., Ischemia and ischemic tolerance in the brain: an overview. Neurotoxicology 25:6 (2004), 895–904.
[49] Zweier, C., Albrecht, B., Mitulla, B., Behrens, R., Beese, M., Gillessen-Kaesbach, G., Rott, H.D., Rauch, A., Mowat-Wilson syndrome with and without Hirschsprung disease is a distinct, recognizable multiple congenital anomalies-mental retardation syndrome caused by mutations in the zinc finger homeo box 1B gene. Am. J. Med. Genet. 108:3 (2002), 177–181.