[en] The neocortex is stereotypically organized into layers of excitatory neurons arranged in a precise parallel orientation. Here we show that dynamic adhesion both preceding and following radial migration is essential for this organization. Neuronal adhesion is regulated by the Mowat-Wilson syndrome-associated transcription factor Zeb2 (Sip1/Zfhx1b) through direct repression of independent adhesion pathways controlled by Neuropilin-1 (Nrp1) and Cadherin-6 (Cdh6). We reveal that to initiate radial migration, neurons must first suppress adhesion to the extracellular matrix. Zeb2 regulates the multipolar stage by transcriptional repression of Nrp1 and thereby downstream inhibition of integrin signaling. Upon completion of migration, neurons undergo an orientation process that is independent of migration. The parallel organization of neurons within the neocortex is controlled by Cdh6 through atypical regulation of integrin signaling via its RGD motif. Our data shed light on the mechanisms that regulate initiation of radial migration and the postmigratory orientation of neurons during neocortical development.
Epifanova, Ekaterina ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques ; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin
Salina, Valentina ; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, ; Institute of Neuroscience, Lobachevsky University of Nizhny Novgorod, Nizhny
Lajkó, Denis; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin,
Textoris-Taube, Kathrin; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin,
Naumann, Thomas; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin,
Bormuth, Olga; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin,
Bormuth, Ingo; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin,
Horan, Stephen; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin,
Schaub, Theres ; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin
Borisova, Ekaterina ; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, ; Institute of Neuroscience, Lobachevsky University of Nizhny Novgorod, Nizhny
Ambrozkiewicz, Mateusz C ; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin
Tarabykin, Victor ; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, ; Institute of Neuroscience, Lobachevsky University of Nizhny Novgorod, Nizhny
Rosário, Marta ; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin
L. Petreanu, T. Mao, S. M. Sternson, K. Svoboda, The subcellular organization of neocortical excitatory connections. Nature 457, 1142-1145 (2009).
S. Schuster, M. Rivalan, U. Strauss, L. Stoenica, T. Trimbuch, N. Rademacher, S. Parthasarathy, D. Lajko, C. Rosenmund, S. A. Shoichet, Y. Winter, V. Tarabykin, M. Rosario, NOMA-GAP/ARHGAP33 regulates synapse development and autistic-like behavior in the mouse. Mol. Psychiatry 20, 1120-1131 (2015).
M. Rosario, S. Schuster, R. Juttner, S. Parthasarathy, V. Tarabykin, W. Birchmeier, Neocortical dendritic complexity is controlled during development by NOMA-GAPdependent inhibition of Cdc42 and activation of cofilin. Genes Dev. 26, 1743-1757 (2012).
W. E. Kaufmann, H. W. Moser, Dendritic anomalies in disorders associated with mental retardation. Cereb. Cortex 10, 981-991 (2000).
B. Nadarajah, J. E. Brunstrom, J. Grutzendler, R. O. Wong, A. L. Pearlman, Two modes of radial migration in early development of the cerebral cortex. Nat. Neurosci. 4, 143-150 (2001).
J. B. Angevine Jr., R. L. Sidman, Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse. Nature 192, 766-768 (1961).
H. Tabata, K. Nakajima, Multipolar migration: The third mode of radial neuronal migration in the developing cerebral cortex. J. Neurosci. 23, 9996-10001 (2003).
S. C. Noctor, V. Martinez-Cerdeno, L. Ivic, A. R. Kriegstein, Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat. Neurosci. 7, 136-144 (2004).
H. Tabata, S. Kanatani, K. Nakajima, Differences of migratory behavior between direct progeny of apical progenitors and basal progenitors in the developing cerebral cortex. Cereb. Cortex 19, 2092-2105 (2009).
Y. Hatanaka, S.-I. Hisanaga, C. W. Heizmann, F. Murakami, Distinct migratory behavior of early- and late-born neurons derived from the cortical ventricular zone. J. Comp. Neurol. 479, 1-14 (2004).
P. Rakic, Mode of cell migration to the superficial layers of fetal monkey neocortex. J. Comp. Neurol. 145, 61-83 (1972).
D. R. Mowat, G. D. Croaker, D. T. Cass, B. A. Kerr, J. Chaitow, L. C. Ades, N. L. Chia, M. J. Wilson, Hirschsprung disease, microcephaly, mental retardation, and characteristic facial features: Delineation of a new syndrome and identification of a locus at chromosome 2q22-q23. J. Med. Genet. 35, 617-623 (1998).
A. Miquelajauregui, T. van de Putte, A. Polyakov, A. Nityanandam, S. Boppana, E. Seuntjens, A. Karabinos, Y. Higashi, D. Huylebroeck, V. Tarabykin, Smad-interacting protein-1 (Zfhx1b) acts upstream of Wnt signaling in the mouse hippocampus and controls its formation. Proc. Natl. Acad. Sci. U.S.A. 104, 12919-12924 (2007).
E. Seuntjens, A. Nityanandam, A. Miquelajauregui, J. Debruyn, A. Stryjewska, S. Goebbels, K. A. Nave, D. Huylebroeck, V. Tarabykin, Sip1 regulates sequential fate decisions by feedback signaling from postmitotic neurons to progenitors. Nat. Neurosci. 12, 1373-1380 (2009).
E. S. Lein, M. J. Hawrylycz, N. Ao, M. Ayres, A. Bensinger, A. Bernard, A. F. Boe, M. S. Boguski, K. S. Brockway, E. J. Byrnes, L. Chen, L. Chen, T. M. Chen, M. Chi Chin, J. Chong, B. E. Crook, A. Czaplinska, C. N. Dang, S. Datta, N. R. Dee, A. L. Desaki, T. Desta, E. Diep, T. A. Dolbeare, M. J. Donelan, H. W. Dong, J. G. Dougherty, B. J. Duncan, A. J. Ebbert, G. Eichele, L. K. Estin, C. Faber, B. A. Facer, R. Fields, S. R. Fischer, T. P. Fliss, C. Frensley, S. N. Gates, K. J. Glattfelder, K. R. Halverson, M. R. Hart, J. G. Hohmann, M. P. Howell, D. P. Jeung, R. A. Johnson, P. T. Karr, R. Kawal, J. M. Kidney, R. H. Knapik, C. L. Kuan, J. H. Lake, A. R. Laramee, K. D. Larsen, C. Lau, T. A. Lemon, A. J. Liang, Y. Liu, L. T. Luong, J. Michaels, J. J. Morgan, R. J. Morgan, M. T. Mortrud, N. F. Mosqueda, L. L. Ng, R. Ng, G. J. Orta, C. C. Overly, T. H. Pak, S. E. Parry, S. D. Pathak, O. C. Pearson, R. B. Puchalski, Z. L. Riley, H. R. Rockett, S. A. Rowland, J. J. Royall, M. J. Ruiz, N. R. Sarno, K. Schaffnit, N. V. Shapovalova, T. Sivisay, C. R. Slaughterbeck, S. C. Smith, K. A. Smith, B. I. Smith, A. J. Sodt, N. N. Stewart, K. R. Stumpf, S. M. Sunkin, M. Sutram, A. Tam, C. D. Teemer, C. Thaller, C. L. Thompson, L. R. Varnam, A. Visel, R. M. Whitlock, P. E. Wohnoutka, C. K. Wolkey, V. Y. Wong, M. Wood, M. B. Yaylaoglu, R. C. Young, B. L. Youngstrom, X. Feng Yuan, B. Zhang, T. A. Zwingman, A. R. Jones, Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168-176 (2007).
T. Van de Putte, A. Francis, L. Nelles, L. A. van Grunsven, D. Huylebroeck, Neural crest-specific removal of Zfhx1b in mouse leads to a wide range of neurocristopathies reminiscent of Mowat-Wilson syndrome. Hum. Mol. Genet. 16, 1423-1436 (2007).
T. Van de Putte, M. Maruhashi, A. Francis, L. Nelles, H. Kondoh, D. Huylebroeck, Y. Higashi, Mice lacking ZFHX1B, the gene that codes for Smad-interacting protein-1, reveal a role for multiple neural crest cell defects in the etiology of Hirschsprung disease-mental retardation syndrome. Am. J. Hum. Genet. 72, 465-470 (2003).
L. Stanchina, T. Van de Putte, M. Goossens, D. Huylebroeck, N. Bondurand, Genetic interaction between Sox10 and Zfhx1b during enteric nervous system development. Dev. Biol. 341, 416-428 (2010).
S. Srivatsa, S. Parthasarathy, Z. Molnar, V. Tarabykin, Sip1 downstream Effector ninein controls neocortical axonal growth, ipsilateral branching, and microtubule growth and stability. Neuron 85, 998-1012 (2015).
M. R. Conces, A. Hughes, C. R. Pierson, Neuropathology of Mowat-Wilson syndrome. Pediatr. Dev. Pathol. 23, 322-325 (2020).
L. Garavelli, I. Ivanovski, S. G. Caraffi, D. Santodirocco, M. Pollazzon, D. M. Cordelli, E. Abdalla, P. Accorsi, M. P. Adam, C. Baldo, A. Bayat, E. Belligni, F. Bonvicini, J. Breckpot, B. Callewaert, G. Cocchi, G. Cuturilo, K. Devriendt, M. B. Dinulos, O. Djuric, R. Epifanio, F. Faravelli, D. Formisano, L. Giordano, M. Grasso, S. Gronborg, A. Iodice, L. Iughetti, D. Lacombe, M. Maggi, B. Malbora, I. Mammi, S. Moutton, R. Moller, P. Muschke, M. Napoli, C. Pantaleoni, R. Pascarella, A. Pellicciari, M. L. Poch-Olive, F. Raviglione, F. Rivieri, C. Russo, S. Savasta, G. Scarano, A. Selicorni, M. Silengo, G. Sorge, L. Tarani, L. G. Tone, A. Toutain, A. Trimouille, E. T. Valera, S. S. Vergano, N. Zanotta, M. Zollino, W. B. Dobyns, A. R. Paciorkowski, Neuroimaging findings in Mowat-Wilson syndrome: A study of 54 patients. Genet. Med. 19, 691-700 (2017).
Y. Higashi, M. Maruhashi, L. Nelles, T. van de Putte, K. Verschueren, T. Miyoshi, A. Yoshimoto, H. Kondoh, D. Huylebroeck, Generation of the floxed allele of the SIP1 (Smad-interacting protein 1) gene for Cre-mediated conditional knockout in the mouse. Genesis 32, 82-84 (2002).
S. Goebbels, I. Bormuth, U. Bode, O. Hermanson, M. H. Schwab, K. A. Nave, Genetic targeting of principal neurons in neocortex and hippocampus of NEX-Cre mice. Genesis 44, 611-621 (2006).
E. Epifanova, A. Babaev, A. G. Newman, V. Tarabykin, Role of Zeb2/Sip1 in neuronal development. Brain Res. 1705, 24-31 (2019).
J. Dimidschstein, L. Passante, A. Dufour, J. van den Ameele, L. Tiberi, T. Hrechdakian, R. Adams, R. Klein, D. C. Lie, Y. Jossin, P. Vanderhaeghen, Ephrin-B1 controls the columnar distribution of cortical pyramidal neurons by restricting their tangential migration. Neuron 79, 1123-1135 (2013).
S. Parthasarathy, S. Srivatsa, A. Nityanandam, V. Tarabykin, Ntf3 acts downstream of Sip1 in cortical postmitotic neurons to control progenitor cell fate through feedback signaling. Development 141, 3324-3330 (2014).
F. O. Kok, I. T. Shepherd, H. I. Sirotkin, Churchill and Sip1a repress fibroblast growth factor signaling during zebrafish somitogenesis. Dev. Dyn. 239, 548-558 (2010).
R. O. Hynes, Integrins: Bidirectional, allosteric signaling machines. Cell 110, 673-687 (2002).
K. K. Lee, Y. de Repentigny, R. Saulnier, P. Rippstein, W. B. Macklin, R. Kothary, Dominant-negative beta1 integrin mice have region-specific myelin defects accompanied by alterations in MAPK activity. Glia 53, 836-844 (2006).
D. P. Leone, J.. B. Relvas, L. S. Campos, S. Hemmi, C. Brakebusch, R. Fassler, C. ffrench-Constant, U. Suter, Regulation of neural progenitor proliferation and survival by β1 integrins. J. Cell Sci. 118, 2589-2599 (2005).
K. Verschueren, J. E. Remacle, C. Collart, H. Kraft, B. S. Baker, P. Tylzanowski, L. Nelles, G. Wuytens, M. T. Su, R. Bodmer, J. C. Smith, D. Huylebroeck, SIP1, a novel zinc finger/homeodomain repressor, interacts with Smad proteins and binds to 5′-CACCT sequences in candidate target genes. J. Biol. Chem. 274, 20489-20498 (1999).
S. Niland, J. A. Eble, Neuropilin: Handyman and power broker in the tumor microenvironment. Adv. Exp. Med. Biol. 1223, 31-67 (2020).
J. Brasch, P. S. Katsamba, O. J. Harrison, G. Ahlsen, R. B. Troyanovsky, I. Indra, A. Kaczynska, B. Kaeser, S. Troyanovsky, B. Honig, L. Shapiro, Homophilic and heterophilic interactions of type II cadherins identify specificity groups underlying cell-adhesive behavior. Cell Rep. 23, 1840-1852 (2018).
E. Dunne, C. M. Spring, A. Reheman, W. Jin, M. C. Berndt, D. K. Newman, P. J. Newman, H. Ni, D. Kenny, Cadherin 6 has a functional role in platelet aggregation and thrombus formation. Arterioscler. Thromb. Vasc. Biol. 32, 1724-1731 (2012).
J. I. Casal, R. A. Bartolome, Beyond N-cadherin, relevance of cadherins 5, 6 and 17 in cancer progression and metastasis. Int. J. Mol. Sci. 20, 3373 (2019).
L. A. DeNardo, D. S. Berns, K. DeLoach, L. Luo, Connectivity of mouse somatosensory and prefrontal cortex examined with trans-synaptic tracing. Nat. Neurosci. 18, 1687-1697 (2015).
Y. Jossin, J. A. Cooper, Reelin, Rap1 and N-cadherin orient the migration of multipolar neurons in the developing neocortex. Nat. Neurosci. 14, 697-703 (2011).
G. Kuo, L. Arnaud, P. Kronstad-O'Brien, J. A. Cooper, Absence of Fyn and Src causes a reeler-like phenotype. J. Neurosci. 25, 8578-8586 (2005).
J. W. Tsai, Y. Chen, A. R. Kriegstein, R. B. Vallee, LIS1 RNA interference blocks neural stem cell division, morphogenesis, and motility at multiple stages. J. Cell Biol. 170, 935-945 (2005).
D. Valdembri, P. T. Caswell, K. I. Anderson, J. P. Schwarz, I. Konig, E. Astanina, F. Caccavari, J. C. Norman, M. J. Humphries, F. Bussolino, G. Serini, Neuropilin-1/GIPC1 signaling regulates α5β1 integrin traffic and function in endothelial cells. PLOS Biol. 7, e1000025 (2009).
F. Polleux, R. J. Giger, D. D. Ginty, A. L. Kolodkin, A. Ghosh, Patterning of cortical efferent projections by semaphorin-neuropilin interactions. Science 282, 1904-1906 (1998).
G. Chen, J. Sima, M. Jin, K. Y. Wang, X. J. Xue, W. Zheng, Y. Q. Ding, X. B. Yuan, Semaphorin-3A guides radial migration of cortical neurons during development. Nat. Neurosci. 11, 36-44 (2008).
Y. Hatanaka, T. Matsumoto, Y. Yanagawa, H. Fujisawa, F. Murakami, M. Masu, Distinct roles of neuropilin 1 signaling for radial and tangential extension of callosal axons. J. Comp. Neurol. 514, 215-225 (2009).
F. Polleux, T. Morrow, A. Ghosh, Semaphorin 3A is a chemoattractant for cortical apical dendrites. Nature 404, 567-573 (2000).
E. Forster, Reelin, neuronal polarity and process orientation of cortical neurons. Neuroscience 269, 102-111 (2014).
Y. Sasaki, C. Cheng, Y. Uchida, O. Nakajima, T. Ohshima, T. Yagi, M. Taniguchi, T. Nakayama, R. Kishida, Y. Kudo, S. Ohno, F. Nakamura, Y. Goshima, Fyn and Cdk5 mediate semaphorin-3A signaling, which is involved in regulation of dendrite orientation in cerebral cortex. Neuron 35, 907-920 (2002).
G. P. Demyanenko, M. Schachner, E. Anton, R. Schmid, G. Feng, J. Sanes, P. F. Maness, Close homolog of L1 modulates area-specific neuronal positioning and dendrite orientation in the cerebral cortex. Neuron 44, 423-437 (2004).
I. Vastrik, B. J. Eickholt, F. S. Walsh, A. Ridley, P. Doherty, Sema3A-induced growth-cone collapse is mediated by Rac1 amino acids 17-32. Curr. Biol. 9, 991-998 (1999).
Y. Jossin, A. M. Goffinet, Reelin signals through phosphatidylinositol 3-kinase and Akt to control cortical development and through mTor to regulate dendritic growth. Mol. Cell. Biol. 27, 7113-7124 (2007).
V. Fenstermaker, Y. Chen, A. Ghosh, R. Yuste, Regulation of dendritic length and branching by semaphorin 3A. J. Neurobiol. 58, 403-412 (2004).
R. S. O'Dell, D. A. Cameron, W. R. Zipfel, E. C. Olson, Reelin prevents apical neurite retraction during terminal translocation and dendrite initiation. J. Neurosci. 35, 10659-10674 (2015).
M. Shelly, L. Cancedda, B. K. Lim, A. T. Popescu, P. L. Cheng, H. Gao, M. M. Poo, Semaphorin3A regulates neuronal polarization by suppressing axon formation and promoting dendrite growth. Neuron 71, 433-446 (2011).
X. Duan, A. Krishnaswamy, M. A. Laboulaye, J. Liu, Y.-R. Peng, M. Yamagata, K. Toma, J. R. Sanes, Cadherin combinations recruit dendrites of distinct retinal neurons to a shared interneuronal scaffold. Neuron 99, 1145-1154.e6 (2018).
J. A. Osterhout, N. Josten, J. Yamada, F. Pan, S. W. Wu, P. L. Nguyen, G. Panagiotakos, Y. U. Inoue, S. F. Egusa, B. Volgyi, T. Inoue, S. A. Bloomfield, B. A. Barres, D. M. Berson, D. A. Feldheim, A. D. Huberman, Cadherin-6 mediates axon-target matching in a non-image-forming visual circuit. Neuron 71, 632-639 (2011).
R. Basu, X. Duan, M. R. Taylor, E. A. Martin, S. Muralidhar, Y. Wang, L. Gangi-Wellman, S. C. Das, M. Yamagata, P. J. West, J. R. Sanes, M. E. Williams, Heterophilic type II cadherins are required for high-magnitude synaptic potentiation in the hippocampus. Neuron 96, 160-176.e8 (2017).
Y. W. Terakawa, Y. U. Inoue, J. Asami, M. Hoshino, T. Inoue, A sharp cadherin-6 gene expression boundary in the developing mouse cortical plate demarcates the future functional areal border. Cereb. Cortex 23, 2293-2308 (2013).
K. Tachikawa, S. Sasaki, T. Maeda, K. Nakajima, Identification of molecules preferentially expressed beneath the marginal zone in the developing cerebral cortex. Neurosci. Res. 60, 135-146 (2008).
K. Sekine, T. Kawauchi, K. I. Kubo, T. Honda, J. Herz, M. Hattori, T. Kinashi, K. Nakajima, Reelin controls neuronal positioning by promoting cell-matrix adhesion via inside-out activation of integrin α5β1. Neuron 76, 353-369 (2012).
M. C. Ambrozkiewicz, M. Schwark, M. Kishimoto-Suga, E. Borisova, K. Hori, A. Salazar-Lazaro, A. Rusanova, B. Altas, L. Piepkorn, P. Bessa, T. Schaub, X. Zhang, T. Rabe, S. Ripamonti, M. Rosario, H. Akiyama, O. Jahn, T. Kobayashi, M. Hoshino, V. Tarabykin, H. Kawabe, Polarity acquisition in cortical neurons is driven by synergistic action of Sox9-regulated Wwp1 and Wwp2 E3 ubiquitin ligases and intronic miR-140. Neuron 100, 1097-1115.e15 (2018).
F. Polleux, A. Ghosh, The slice overlay assay: A versatile tool to study the influence of extracellular signals on neuronal development. Sci. STKE 2002, pl9 (2002).
N. Dyballa, S. Metzger, Fast and sensitive colloidal coomassie G-250 staining for proteins in polyacrylamide gels. J. Vis. Exp., 1431 (2009).
A. Lehmann, A. Niewienda, K. Jechow, K. Janek, C. Enenkel, Ecm29 fulfils quality control functions in proteasome assembly. Mol. Cell 38, 879-888 (2010).