[en] Alzheimer's disease (AD) is a widespread chronic neurodegenerative pathology characterized by synaptic dysfunction, partial neuronal death, cognitive decline and memory impairments. The major hallmarks of AD are extracellular senile amyloid plaques formed by various types of amyloid proteins (Aβ) and the formation and accumulation of intracellular neurofibrillary tangles. However, there is a lack of relevant experimental models for studying changes in neural network activity, the features of intercellular signaling or the effects of drugs on the functional activity of nervous cells during AD development. In this work, we examined two experimental models of amyloidopathy using primary hippocampal cultures. The first model involves the embryonic brains of 5xFAD mice; the second uses chronic application of amyloid beta 1-42 (Aβ1-42). The model based on primary hippocampal cells obtained from 5xFAD mice demonstrated changes in spontaneous network calcium activity characterized by a decrease in the number of cells exhibiting Ca(2+) activity, a decrease in the number of Ca(2+) oscillations and an increase in the duration of Ca(2+) events from day 21 of culture development in vitro. Chronic application of Aβ1-42 resulted in the rapid establishment of significant neurodegenerative changes in primary hippocampal cultures, leading to marked impairments in neural network calcium activity and increased cell death. Using this model and multielectrode arrays, we studied the influence of amyloidopathy on spontaneous bioelectrical neural network activity in primary hippocampal cultures. It was shown that chronic Aβ application decreased the number of network bursts and spikes in a burst. The spatial structure of neural networks was also disturbed that characterized by reduction in both the number of key network elements (hubs) and connections between network elements. Moreover, application of brain-derived neurotrophic factor (BDNF) recombinant protein and BDNF hyperexpression by an adeno-associated virus vector partially prevented these amyloidopathy-induced neurodegenerative phenomena. BDNF maintained cell viability and spontaneous bioelectrical and calcium network activity in primary hippocampal cultures.
Mitroshina, Elena V; Department of Neurotechnology, Institute of Biology and Biomedicine, National
Yarkov, Roman S; Department of Neurotechnology, Institute of Biology and Biomedicine, National
Mishchenko, Tatiana A; Department of Neurotechnology, Institute of Biology and Biomedicine, National ; Molecular and Cell Technologies Group, Central Scientific Research Laboratory,
Krut', Victoria G; Department of Neurotechnology, Institute of Biology and Biomedicine, National
Gavrish, Maria S; Department of Neurotechnology, Institute of Biology and Biomedicine, National
Epifanova, Ekaterina ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques ; Department of Neurotechnology, Institute of Biology and Biomedicine, National
Babaev, Alexey A; Department of Neurotechnology, Institute of Biology and Biomedicine, National
Vedunova, Maria V; Department of Neurotechnology, Institute of Biology and Biomedicine, National
Language :
English
Title :
Brain-Derived Neurotrophic Factor (BDNF) Preserves the Functional Integrity of Neural Networks in the β-Amyloidopathy Model in vitro.
Ahnaou A., Moechars D., Raeymaekers L., Biermans R., Manyakov N. V., Bottelbergs A., et al. (2017). Emergence of early alterations in network oscillations and functional connectivity in a tau seeding mouse model of Alzheimer’s disease pathology. Sci. Rep. 7:14189. 10.1038/s41598-017-13839-6 29079799
Banik A., Brown R. E., Bamburg J., Lahiri D. K., Khurana D., Friedland R. P., et al. (2015). Translation of pre-clinical studies into successful clinical trials for Alzheimer’s disease: what are the roadblocks and how can they be overcome? J. Alzheimers Dis. 47 815–843. 10.3233/JAD-150136 26401762
Bharani K. L., Ledreux A., Gilmore A., Carroll S. L., Granholm A. C., (2019). Serum pro-BDNF levels correlate with phospho-tau staining in Alzheimer’s disease. Neurobiol. Aging 87 49–59. 10.1016/j.neurobiolaging.2019.11.010 31882186
Bilkei-Gorzo A., (2014). Genetic mouse models of brain ageing and Alzheimer’s disease. Pharmacol. Ther. 142 244–257. 10.1016/j.pharmthera.2013.12.009 24362083
Bourdenx M., Koulakiotis N. S., Sanoudou D., Bezard E., Dehay B., Tsarbopoulos A., (2017). Protein aggregation and neurodegeneration in prototypical neurodegenerative diseases: examples of amyloidopathies, tauopathies and synucleinopathies. ProgNeurobiol 155 171–193. 10.1016/j.pneurobio.2015.07.003 26209472
Budni J., Bellettini-Santos T., Mina F., Garcez M. L., Zugno A. I., (2015). The involvement of BDNF, NGF and GDNF in aging and Alzheimer’s disease. Aging Dis. 6 331–341. 10.14336/AD.2015.0825 26425388
Busche M. A., (2018). In vivo two-photon calcium imaging of hippocampal neurons in Alzheimer mouse models. Methods Mol. Biol. 1750 341–351. 10.1007/978-1-4939-7704-8_23
Busche M. A., Chen X., Henning H. A., Reichwald J., Staufenbiel M., Sakmann B., et al. (2012). Critical role of soluble amyloid-β for early hippocampal hyperactivity in a mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. U.S.A. 109 8740–8745. 10.1073/pnas.1206171109 22592800
Calvo-Rodríguez M., García-Durillo M., Villalobos C., Núñez L., (2016). Aging enables Ca2+ overload and apoptosis induced by amyloid-β oligomers in rat hippocampal neurons: neuroprotection by non-steroidal anti-inflammatory drugs and R-flurbiprofen in aging neurons. J. Alzheimers Dis. 54 207–221. 10.3233/JAD-151189 27447424
Cao J., Hou J., Ping J., Cai D., (2018). Advances in developing novel therapeutic strategies for Alzheimer’s disease. Mol. Neurodegener. 13:64. 10.1186/s13024-018-0299-8 30541602
Cheng S., Tereshchenko J., Zimmer V., Vachey G., Pythoud C., Rey M., et al. (2018). Therapeutic efficacy of regulable GDNF expression for Huntington’s and Parkinson’s disease by a high-induction, background-free “GeneSwitch” vector. Exp. Neurol. 309 79–90. 10.1016/j.expneurol.2018.07.017 30076831
Choi S. H., Bylykbashi E., Chatila Z. K., Lee S. W., Pulli B., Clemenson G. D., et al. (2018). Combined adult neurogenesis and BDNF mimic exercise effects on cognition in an Alzheimer’s mouse model. Science 361:eaan8821. 10.1126/science.aan8821 30190379
Cline E. N., Bicca M. A., Viola K. L., Klein W. L., (2018). The amyloid-β oligomer hypothesis: beginning of the third decade. J. Alzheimers Dis. 64(Suppl. 1) S567–S610. 10.3233/JAD-179941 29843241
Criscuolo C., Fabiani C., Bonadonna C., Origlia N., Domenici L., (2015). BDNF prevents amyloid-dependent impairment of LTP in the entorhinal cortex by attenuating p38 MAPK phosphorylation. Neurobiol. Aging 36 1303–1309. 10.1016/j.neurobiolaging.2014.11.016 25554494
Cummings J., Lee G., Ritter A., Zhong K., (2018). Alzheimer’s disease drug development pipeline: 2018. Alzheimers Dement 4 195–214. 10.1016/j.trci.2018.03.009 29955663
de Pins B., Cifuentes-Díaz C., Farah A. T., López-Molina L., Montalban E., Sancho-Balsells A., et al. (2019). Conditional BDNF delivery from astrocytes rescues memory deficits, spine density, and synaptic properties in the 5xFAD mouse model of Alzheimer disease. J. Neurosci. 39 2441–2458. 10.1523/JNEUROSCI.2121-18.2019 30700530
de Haan W., van Straaten E. C. W., Gouw A. A., Stam C. J., (2017). Altering neuronal excitability to preserve network connectivity in a computational model of Alzheimer’s disease. PLoS Comput. Biol. 13:e1005707. 10.1371/journal.pcbi.1005707 28938009
DiChiara T., DiNunno N., Clark J., Bu R. L., Cline E. N., Rollins M. G., et al. (2017). Alzheimer’s toxic amyloid beta oligomers: unwelcome visitors to the Na/K ATPase alpha3 docking station. Yale J. Biol. Med. 90 45–61.
Drummond E., Wisniewski T., (2017). Alzheimer’s disease: experimental models and reality. Acta Neuropathol. 133 155–175. 10.1007/s00401-016-1662-x 28025715
Dubois B., Feldman H. H., Jacova C., Hampel H., Molinuevo J. L., Blennow K., et al. (2014). Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol. 6 614–629. 10.1016/S1474-4422(14)70090-0
Forner S., Baglietto-Vargas D., Martini A. C., Trujillo-Estrada L., LaFerla F. M., (2017). Synaptic impairment in Alzheimer’s disease: a dysregulated symphony. Trends Neurosci. 40 347–357. 10.1016/j.tins.2017.04.002 28494972
Gao F., Gao K., He C., Liu M., Wan H., Wang P., (2019). Multi-site dynamic recording for Aβ oligomers-induced Alzheimer’s disease in vitro based on neuronal network chip. Biosens. Bioelectron. 133 183–191. 10.1016/j.bios.2019.03.025 30928737
Hadar A., Gurwitz D., (2018). Peripheral transcriptomic biomarkers for early detection of sporadic Alzheimer disease? Dialogues Clin. Neurosci. 4 293–300. 10.31887/dcns.2018.20.4/dgurwitz
Hampel H., Schneider L. S., Giacobini E., Kivipelto M., Sindi S., Dubois B., et al. (2015). Advances in the therapy of Alzheimer’s disease: targeting amyloid beta and tau and perspectives for the future. Expert Rev. Neurother. 1 83–105. 10.1586/14737175.2015.995637 25537424
Hasan M. F., Berdichevsky Y., (2016). Neural circuits on a chip. Micromachines (Basel) 7:E157. 10.3390/mi7090157 30404330
Heggland I., Kvello P., Witter M. P., (2019). Electrophysiological characterization of networks and single cells in the hippocampal region of a transgenic rat model of Alzheimer’s disease. eNeuro 6:ENEURO.0448-17.2019. 10.1523/ENEURO.0448-17.2019 30809590
Jiao S. S., Shen L. L., Zhu C., Bu X. L., Liu Y. H., Liu C. H., et al. (2016). Brain-derived neurotrophic factor protects against tau-related neurodegeneration of Alzheimer’s disease. Transl. Psychiatry 6:e907. 10.1038/tp.2016.186 27701410
Johnstone A. F., Gross G. W., Weiss D. G., Schroeder O. H., Gramowski A., Shafer T. J., (2010). Microelectrode arrays: a physiologically based neurotoxicity testing platform for the 21st century. Neurotoxicology 4 331–350. 10.1016/j.neuro.2010.04.001 20399226
Kabir M. T., Sufian M. A., Uddin M. S., Begum M. M., Akhter S., Islam A., et al. (2019). NMDA receptor antagonists: repositioning of memantine as a multitargeting agent for Alzheimer’s therapy. Curr. Pharm. Des. 25 3506–3518. 10.2174/138161282566619101110244
Karch C. M., Cruchaga C., Goate A. M., (2014). Alzheimer’s disease genetics: from the bench to the clinic. Neuron 83 11–26. 10.1016/j.neuron.2014.05.041 24991952
Kemppainen S., Rantamäki T., Jerónimo-Santos A., Lavasseur G., Autio H., Karpova N., et al. (2012). Impaired TrkB receptor signaling contributes to memory impairment in APP/PS1 mice. Neurobiol. Aging 33:1122.e23-39. 10.1016/j.neurobiolaging.2011.11.006 22209410
Kim D. H., Yeo S. H., Park J. M., Choi J. Y., Lee T. H., Park S. Y., et al. (2014). Genetic markers for diagnosis and pathogenesis of Alzheimer’s disease. Gene 545 185–193. 10.1016/j.gene.2014.05.031 24838203
Kodis E. J., Choi S., Swanson E., Ferreira G., Bloom G. S., (2018). N-methyl-D-aspartate receptor-mediated calcium influx connects amyloid-β oligomers to ectopic neuronal cell cycle reentry in Alzheimer’s disease. Alzheimers Dement. 14 1302–1312. 10.1016/j.jalz.2018.05.017 30293574
Kuchibhotla K. V., Goldman S. T., Lattarulo C. R., Wu H. Y., Hyman B. T., Bacskai B. J., (2008). A plaques lead to aberrant regulation of calcium homeostasis in vivo resulting in structural and functional disruption of neuronal networks. Neuron 59 214–225. 10.1016/j.neuron.2008.06.008 18667150
Lasala M., Fabiani C., Corradi J., Antollini S., Bouzat C., (2019). Molecular modulation of human α7 nicotinic receptor by Amyloid-β peptides. Front. Cell. Neurosci. 13:37. 10.3389/fncel.2019.00037 30800059
Lei H., Zhang Y., Huang L., Xu S., Li J., Yang L., et al. (2018). L-3-n-butylphthalide regulates proliferation, migration, and differentiation of neural stem cell in vitro and promotes neurogenesis in APP/PS1 Mouse model by regulating BDNF/TrkB/CREB/Akt pathway. Neurotox. Res. 34 477–488. 10.1007/s12640-018-9905-3 29728920
Lim S., Airavaara M., Harvey B. K., (2010). Viral vectors for neurotrophic factor delivery: a gene therapy approach for neurodegenerative diseases of the CNS. Pharmacol. Res. 61 14–26. 10.1016/j.phrs.2009.10.002 19840853
Liu P., Reichl J. H., Rao E. R., McNellis B. M., Huang E. S., Hemmy L. S., et al. (2017). Quantitative comparison of dense-core amyloid plaque accumulation in amyloid-β precursor protein transgenic mice. J. Alzheimers Dis. 56 743–761. 10.3233/JAD-161027 28059792
Mak D. O., Cheung K. H., Toglia P., Foskett J. K., Ullah G., (2015). Analyzing and quantifying the gain-of-function enhancement of IP3 receptor gating by familial Alzheimer’s disease-causing mutants in presenilins. PLoS Comput. Biol. 11:e1004529. 10.1371/journal.pcbi.1004529 26439382
Mango D., Saidi A., Cisale G. Y., Feligioni M., Corbo M., Nisticò R., (2019). Targeting synaptic plasticity in experimental models of Alzheimer’s disease. Front Pharmacol. 10:778. 10.3389/fphar.2019.00778 31379566
Mishchenko T. A., Mitroshina E. V., Usenko A. V., Voronova N. V., Astrakhanova T. A., Shirokova O. M., et al. (2019). Features of neural network formation and their functions in primary hippocampal cultures in the context of chronic TrkB receptor system influence. Front. Physiol. 9:1925. 10.3389/fphys.2018.01925 30687128
Mitroshina E. V., Mishchenko T. A., Usenko A. V., Epifanova E. A., Yarkov R. S., Gavrish M. S., et al. (2018). AAV-Syn-BDNF-EGFP virus construct exerts neuroprotective action on the hippocampal neural network during hypoxia in vitro. Int. J. Mol. Sci. 19:2295. 10.3390/ijms19082295 30081596
Mondragón-Rodríguez S., Gu N., Manseau F., Williams S., (2018). Alzheimer’s transgenic model is characterized by very early brain network alterations and β-CTF fragment accumulation: reversal by β-secretase inhibition. Front. Cell. Neurosci. 12:121. 10.3389/fncel.2018.00121 29867356
Mucke L., Masliah E., Yu G. Q., Mallory M., Rockenstein E. M., Tatsuno G., et al. (2000). High-level neuronal expression of aβ 1-42 in wildtype human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J. Neurosci. 20 4050–4058. 10.1523/jneurosci.20-11-04050.2000 10818140
Müller M. K., Jacobi E., Sakimura K., Malinow R., von Engelhardt J., (2018). NMDA receptors mediate synaptic depression, but not spine loss in the dentate gyrus of adult amyloid Beta (Aβ) overexpressing mice. Acta Neuropathol. Commun. 6:110. 10.1186/s40478-018-0611-4 30352630
Nagahara A. H., Mateling M., Kovacs I., Wang L., Eggert S., Rockenstein E., et al. (2013). Early BDNF treatment ameliorates cell loss in the entorhinal cortex of APP transgenic mice. J. Neurosci. 33 15596–15602. 10.1523/JNEUROSCI.5195-12.2013 24068826
Nagahara A. H., Merrill D. A., Coppola G., Tsukada S., Schroeder B. E., Shaked G. M., et al. (2009). Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer’s disease. Nat. Med. 15 331–337. 10.1038/nm.1912 19198615
Núñez L., Calvo-Rodríguez M., Caballero E., García-Durillo M., Villalobos C., (2018). Neurotoxic Ca2+ signaling induced by amyloid-β oligomers in aged hippocampal neurons in vitro. Methods Mol. Biol. 1779 341–354. 10.1007/978-1-4939-7816-8_20
Oakley H., Cole S. L., Logan S., Maus E., Shao P., Craft J., et al. (2006). Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J. Neurosci. 26 10129–10140. 10.1523/JNEUROSCI.1202-06.2006 17021169
Park S. E., Lee J., Chang E. H., Kim J. H., Sung J. H., Na D. L., et al. (2016). Activin A secreted by human mesenchymal stem cells induces neuronal development and neurite outgrowth in an in vitro model of Alzheimer’s disease: neurogenesis induced by MSCs via activin A. Arch. Pharm. Res. 39 1171–1179. 10.1007/s12272-016-0799-4 27515053
Peng S., Wuu J., Mufson E. J., Fahnestock M., (2005). Precursor form of brain-derived neurotrophic factor and mature brain-derived neurotrophic factor are decreased in the pre-clinical stages of Alzheimer’s disease. J. Neurochem. 93 1412–1421. 10.1111/j.1471-4159.2005.03135.x 15935057
Pignataro A., Middei S., (2017). Trans-synaptic spread of amyloid-β in alzheimer’s disease: paths to β-amyloidosis. Neural. Plast. 2017:5281829. 10.1155/2017/5281829 29435372
Pimashkin A., Kastalskiy I., Simonov A., Koryagina E., Mukhina I., Kazantsev V., (2011). Spiking signatures of spontaneous activity bursts in hippocampal cultures. Front. Comput. Neurosci. 5:46. 10.3389/fncom.2011.00046 22087091
Poon W. W., Carlos A. J., Aguilar B. L., Berchtold N. C., Kawano C. K., Zograbyan V., et al. (2013). β-Amyloid (Aβ) oligomers impair brain-derived neurotrophic factor retrograde trafficking by down-regulating ubiquitin C-terminal hydrolase, UCH-L1. J. Biol. Chem. 288 169–182. 10.1074/jbc.M113.463711 23599427
Radde R., Bolmont T., Kaeser S. A., Coomaraswamy J., Lindau D., Stoltze L., et al. (2006). Aβ42-driven cerebral amyloidosis in transgenic mice reveals early and robust pathology. EMBO Rep. 7 940–946. 10.1038/sj.embor.7400784 16906128
Scarano S., Lisi S., Ravelet C., Peyrin E., Minunni M., (2016). Detecting Alzheimer’s disease biomarkers: from antibodies to new bio-mimetic receptors and their application to established and emerging bioanalytical platforms – a critical review. Anal. Chim. Acta 940 21–37. 10.1016/j.aca.2016.08.008 27662756
Shirokova O. M., Frumkina L. E., Vedunova M. V., Mitroshina E. V., Zakharov Y. N., Khaspekov L., et al. (2013). Morphofunctional patterns of neuronal network developing in dissociated hippocampal cell cultures. Sovrem. Tehnol. Med. 5 6–13.
Shishkina T. V., Mishchenko T. A., Mitroshina E. V., Shirokova O. M., Pimashkin A. S., Kastalskiy I. A., et al. (2018). Glial cell line-derived neurotrophic factor (GDNF) counteracts hypoxic damage to hippocampal neural network function in vitro. Brain Res. 1678 310–321. 10.1016/j.brainres.2017.10.023 29106947
Stancu I. C., Vasconcelos B., Terwel D., Dewachter I., (2014). Models of β-amyloid induced Tau-pathology: the long and “folded” road to understand the mechanism. Mol. Neurodegener. 9:51. 10.1186/1750-1326-9-51 25407337
Tereshchenko J., Maddalena A., Bähr M., Kügler S., (2014). Pharmacologically controlled, discontinuous GDNF gene therapy restores motor function in a rat model of Parkinson’s disease. Neurobiol. Dis. 65 35–42. 10.1016/j.nbd.2014.01.009 24440408
Tu S., Okamoto S., Lipton S. A., Xu H., (2014). Oligomeric Aβ-induced synaptic dysfunction in Alzheimer’s disease. Mol. Neurodegener. 9:48. 10.1186/1750-1326-9-48 25394486
Vedunova M., Sakharnova T., Mitroshina E., Perminova M., Pimashkin A., Zakharov Y., et al. (2013). Seizure-like activity in hyaluronidase-treated dissociated hippocampal cultures. Front. Cell. Neurosci. 7:149. 10.3389/fncel.2013.00149 24062641
Vedunova M. V., Mishchenko T. A., Mitroshina E. V., Mukhina I. V., (2015). TrkB-mediated neuroprotective and antihypoxic properties of Brain-derived neurotrophic factor. Oxid. Med. Cell. Longev. 2015:453901. 10.1155/2015/453901 26075035
Villalobos C., Caballero E., Sanz-Blasco S., Nunez L., (2012). Study of neurotoxic intracellular calcium signalling triggered by amyloids. Methods Mol. Biol. 849 289–302. 10.1007/978-1-61779-551-0_20
Villalobos Acosta D. M. Á, Chimal Vega B., Correa Basurto J., Fragoso Morales L. G., Rosales Hernández M. C., (2018). Recent advances by in silico and in vitro studies of amyloid-β 1-42 fibril depicted a s-shape conformation. Int. J. Mol. Sci. 19:2415. 10.3390/ijms19082415 30115846
Wagenaar D. A., Pine J., Potter S. M., (2006). An extremely rich repertoire of bursting patterns during the development of cortical cultures. BMC Neurosci. 7:11. 10.1186/1471-2202-7-11 16464257
Walker L. C., Diamond M. I., Duff K. E., Hyman B. T., (2013). Mechanisms of protein seeding in neurodegenerative diseases. JAMA Neurol. 70 304–310. 10.1001/jamaneurol.2013.1453 23599928
Wang K., Sun W., Zhang L., Guo W., Xu J., Liu S., et al. (2018). Oleanolic acid ameliorates Aβ25-35 injection-induced memory deficit in Alzheimer’s disease model rats by maintaining synaptic plasticity. CNS Neurol. Disord. Drug Targets 17 389–399. 10.2174/1871527317666180525113109 29793416
Wang N., Qiu P., Cui W., Zhang B., Yan X., He S., (2018). Recent advances in multi-target anti-Alzheimer disease compounds (2013 up to present). Curr. Med. Chem. 26 5684–5710. 10.2174/0929867326666181203124102 30501591
Wang R., Holsinger R., (2018). Exercise-induced brain-derived neurotrophic factor expression: therapeutic implications for Alzheimer’s dementia. Ageing Res. Rev. 46 109–121. 10.1016/j.arr.2018.10.002 30326283
Webster S. J., Bachstetter A. D., Nelson P. T., Schmitt F. A., Van Eldik L. J., (2014). Using mice to model Alzheimer’s dementia: an overview of the clinical disease and the preclinical behavioral changes in 10 mouse models. Front. Genet. 5:88. 10.3389/fgene.2014.00088 24795750
Yasutake C., Kuroda K., Yanagawa T., Okamura T., Yoneda H., (2006). Serum BDNF, TNF-alpha and IL-1beta levels in dementia patients: comparison between Alzheimer’s disease and vascular dementia. Eur. Arch. Psychiatry Clin. Neurosci. 256 402–406. 10.1007/s00406-006-0652-8 16783499
Yuste R., (2015). From the neuron doctrine to neural networks. Nat. Rev. Neurosci. 16 487–497. 10.1038/nrn3962 26152865
Zakharov Y. N., Mitroshina E. V., Shirokova O., Mukhina I. V., (2013). “Calcium transient imaging as tool for neuronal and glial network interaction study,” in Models, Algorithms, and Technologies for Network Analysis. Springer Proceedings in Mathematics & Statistics, Vol. 32 eds Goldengorin B., Kalyagin V., Pardalos P., (New York, NY: Springer), 225–232. 10.1007/978-1-4614-5574-5_12
Zheng Z., Sabirzhanov B., Keifer J., (2010). Oligomeric amyloid-{beta} inhibits the proteolytic conversion of brain-derived neurotrophic factor (BDNF), AMPA receptor trafficking, and classical conditioning. J. Biol. Chem. 285 34708–34717. 10.1074/jbc.M110.150821 20807770