Abou-Jaoude, A; UMR INSERM S_1109 University of Strasbourg, 67000 Strasbourg, France. Electronic address: antoine.aboujaoude91@gmail.com
Courtes, M; UMR INSERM S_1109 University of Strasbourg, 67000 Strasbourg, France. Electronic address: marjorie.courtes@etu.unistra.fr
Badique, L; UMR INSERM S_1109 University of Strasbourg, 67000 Strasbourg, France. Electronic address: badiquel@gmail.com
Elhaj Mahmoud, D; UMR INSERM S_1109 University of Strasbourg, 67000 Strasbourg, France. Electronic address: dorrahajmahmoud@hotmail.com
Abboud, Clauda ; Université de Liège - ULiège > GIGA > GIGA Molecular Biology of Diseases - Molecular Pharmacology ; UMR INSERM S_1109 University of Strasbourg, 67000 Strasbourg, France. Electronic address: claudaabboud@gmail.com
Mlih, M; UMR INSERM S_1109 University of Strasbourg, 67000 Strasbourg, France. Electronic address: mmlih@tamu.edu
Justiniano, H; UMR INSERM S_1109 University of Strasbourg, 67000 Strasbourg, France. Electronic address: helene.justiniano@unistra.fr
Milbach, M; UMR INSERM S_1109 University of Strasbourg, 67000 Strasbourg, France. Electronic address: marc.milbach@etu.unistra.fr
Lambert, M; UMR INSERM S_1109 University of Strasbourg, 67000 Strasbourg, France. Electronic address: magalie.lambert@etu.unistra.fr
Lemle, A; UMR INSERM S_1109 University of Strasbourg, 67000 Strasbourg, France. Electronic address: alexandre.lemle@gmail.com
Awan, S; UMR INSERM S_1109 University of Strasbourg, 67000 Strasbourg, France. Electronic address: dr.saraawan17@gmail.com
Terrand, J; UMR INSERM S_1109 University of Strasbourg, 67000 Strasbourg, France. Electronic address: jerome.terrand@unistra.fr
Niemeier, A; Department of Biochemistry and Molecular Cell Biology and Department of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. Electronic address: niemeier@uke.uni-hamburg.de
Barbero, A; Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland. Electronic address: Andrea.Barbero@usb.ch
Houard, X; Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012 Paris, France. Electronic address: xavier.houard@upmc.fr
Boucher, P; UMR INSERM S_1109 University of Strasbourg, 67000 Strasbourg, France. Electronic address: philippe.boucher@unistra.fr
Matz, R L; UMR INSERM S_1109 University of Strasbourg, 67000 Strasbourg, France. Electronic address: rachel.matz-westphal@unistra.fr
This study was supported by two grants from Société Française de Rhumatologie (individual research project N° 3610 and collaborative research project N°4335). The funding source had no role in study design, collection, analysis or interpretation of data, or in writing the manuscript and decision to submit the manuscript.
Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., et al. Multilineage potential of adult human mesenchymal stem cells. Science 284 (1999), 143–147.
Kronenberg, H.M., Developmental regulation of the growth plate. Nature 423 (2003), 332–336.
Kozhemyakina, E., Lassar, A.B., Zelzer, E., A pathway to bone: signaling molecules and transcription factors involved in chondrocyte development and maturation. Development 142 (2015), 817–831.
Pitsillides, A.A., Beier, F., Cartilage biology in osteoarthritis--lessons from developmental biology. Nat Rev Rheumatol 7 (2011), 654–663.
Troeberg, L., Nagase, H., Proteases involved in cartilage matrix degradation in osteoarthritis. Biochim Biophys Acta 1824 (2012), 133–145.
Vainikka, S., Joukov, V., Wennstrom, S., Bergman, M., Pelicci, P.G., Alitalo, K., Signal transduction by fibroblast growth factor receptor-4 (FGFR-4). Comparison with FGFR-1. J Biol Chem 269 (1994), 18320–18326.
Liu, J.P., Baker, J., Perkins, A.S., Robertson, E.J., Efstratiadis, A., Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell 75 (1993), 59–72.
Chen, Z., Yue, S.X., Zhou, G., Greenfield, E.M., Murakami, S., ERK1 and ERK2 regulate chondrocyte terminal differentiation during endochondral bone formation. J Bone Miner Res 30 (2015), 765–774.
Xiao, G., Jiang, D., Thomas, P., Benson, M.D., Guan, K., Karsenty, G., et al. MAPK pathways activate and phosphorylate the osteoblast-specific transcription factor. Cbfa1. J Biol Chem 275 (2000), 4453–4459.
Zheng, Q., Zhou, G., Morello, R., Chen, Y., Garcia-Rojas, X., Lee, B., Type X collagen gene regulation by Runx2 contributes directly to its hypertrophic chondrocyte-specific expression in vivo. J Cell Biol 162 (2003), 833–842.
Wills, M.K., Jones, N., Teaching an old dogma new tricks: twenty years of Shc adaptor signalling. Biochem J 447 (2012), 1–16.
Mlih, M., Host, L., Martin, S., Niederhoffer, N., Monassier, L., Terrand, J., et al. The Src homology and collagen A (ShcA) adaptor protein is required for the spatial organization of the costamere/Z-disk network during heart development. J Biol Chem 290 (2015), 2419–2430.
Woods, A., Wang, G., Beier, F., Regulation of chondrocyte differentiation by the actin cytoskeleton and adhesive interactions. J Cell Physiol 213 (2007), 1–8.
Hawley, S.P., Wills, M.K., Rabalski, A.J., Bendall, A.J., Jones, N., Expression patterns of ShcD and Shc family adaptor proteins during mouse embryonic development. Dev Dynam 240 (2011), 221–231.
Craparo, A., O'Neill, T.J., Gustafson, T.A., Non-SH2 domains within insulin receptor substrate-1 and SHC mediate their phosphotyrosine-dependent interaction with the NPEY motif of the insulin-like growth factor I receptor. J Biol Chem 270 (1995), 15639–15643.
Wang, J.K., Gao, G., Goldfarb, M., Fibroblast growth factor receptors have different signaling and mitogenic potentials. Mol Cell Biol 14 (1994), 181–188.
Vogel, W., Gish, G.D., Alves, F., Pawson, T., The discoidin domain receptor tyrosine kinases are activated by collagen. Mol Cell 1 (1997), 13–23.
Wang, Y., Cheng, Z., Elalieh, H.Z., Nakamura, E., Nguyen, M.T., Mackem, S., et al. IGF-1R signaling in chondrocytes modulates growth plate development by interacting with the PTHrP/Ihh pathway. J Bone Miner Res 26 (2011), 1437–1446.
Ferrao Blanco, M.N., Domenech Garcia, H., Legeai-Mallet, L., van Osch, G.J.V.M., Tyrosine kinases regulate chondrocyte hypertrophy: promising drug targets for Osteoarthritis. Osteoarthritis Cartilage 29 (2021), 1389–1398.
Sosic, D., Richardson, J.A., Yu, K., Ornitz, D.M., Olson, E.N., Twist regulates cytokine gene expression through a negative feedback loop that represses NF-kappaB activity. Cell 112 (2003), 169–180.
Pritzker, K.P., Gay, S., Jimenez, S.A., Ostergaard, K., Pelletier, J.P., Revell, P.A., et al. Osteoarthritis cartilage histopathology: grading and staging. Osteoarthritis Cartilage 14 (2006), 13–29.
Xu, L., Polur, I., Lim, C., Servais, J.M., Dobeck, J., Li, Y., et al. Early-onset osteoarthritis of mouse temporomandibular joint induced by partial discectomy. Osteoarthritis Cartilage 17 (2009), 917–922.
Gosset, M., Berenbaum, F., Thirion, S., Jacques, C., Primary culture and phenotyping of murine chondrocytes. Nat Protoc 3 (2008), 1253–1260.
Caron, M.M., Emans, P.J., Coolsen, M.M., Voss, L., Surtel, D.A., Cremers, A., et al. Redifferentiation of dedifferentiated human articular chondrocytes: comparison of 2D and 3D cultures. Osteoarthritis Cartilage 20 (2012), 1170–1178.
Scotti, C., Tonnarelli, B., Papadimitropoulos, A., Scherberich, A., Schaeren, S., Schauerte, A., et al. Recapitulation of endochondral bone formation using human adult mesenchymal stem cells as a paradigm for developmental engineering. Proc Natl Acad Sci U S A 107 (2010), 7251–7256.
Abou-Jaoude, A., Badique, L., Mlih, M., Awan, S., Guo, S., Lemle, A., et al. Loss of the adaptor protein ShcA in endothelial cells protects against monocyte macrophage adhesion, LDL-oxydation, and atherosclerotic lesion formation. Sci Rep, 8, 2018, 4501.
DeLise, A.M., Fischer, L., Tuan, R.S., Cellular interactions and signaling in cartilage development. Osteoarthritis Cartilage 8 (2000), 309–334.
Pesesse, L., Sanchez, C., Delcour, J.P., Bellahcène, A., Baudouin, C., Msika, P., et al. Consequences of chondrocyte hypertrophy on osteoarthritic cartilage: potential effect on angiogenesis. Osteoarthritis Cartilage 21 (2013), 1913–1923.
Horner, A., Bord, S., Kelsall, A.W., Coleman, N., Compston, J.E., Tie2 ligands angiopoietin-1 and angiopoietin-2 are coexpressed with vascular endothelial cell growth factor in growing human bone. Bone 28 (2001), 65–71.
Zaidi, S.K., Sullivan, A.J., Medina, R., Ito, Y., van Wijnen, A.J., Stein, J.L., et al. Tyrosine phosphorylation controls Runx2-mediated subnuclear targeting of YAP to repress transcription. EMBO J 23 (2004), 790–799.
Deng, Y., Wu, A., Li, P., Li, G., Qin, L., Song, H., et al. Yap1 regulates multiple steps of chondrocyte differentiation during skeletal development and bone repair. Cell Rep 14 (2016), 2224–2237.
Dreier, R., Hypertrophic differentiation of chondrocytes in osteoarthritis: the developmental aspect of degenerative joint disorders. Arthritis Res Ther, 12, 2010, 216.
van der Kraan, P.M., Stoop, R., Meijers, T.H., Poole, A.R., van den Berg, W.B., Expression of type X collagen in young and old C57Bl/6 and Balb/c mice. Relation with articular cartilage degeneration. Osteoarthritis Cartilage 9 (2001), 92–100.
Staines, K.A., Pollard, A.S., McGonnell, I.M., Farquharson, C., Pitsillides, A.A., Cartilage to bone transitions in health and disease. J Endocrinol 219 (2013), R1–R12.
Karsenty, G., Wagner, E.F., Reaching a genetic and molecular understanding of skeletal development. Dev Cell 2 (2002), 389–406.
Zhou, G., Zheng, Q., Engin, F., Munivez, E., Chen, Y., Sebald, E., et al. Dominance of SOX9 function over RUNX2 during skeletogenesis. Proc Natl Acad Sci U S A 103 (2006), 19004–19009.
Kishiya, M., Sawada, T., Kanemaru, K., Kudo, H., Numasawa, T., Yokoyama, T., et al. A functional RNAi screen for Runx2-regulated genes associated with ectopic bone formation in human spinal ligaments. J Pharmacol Sci 106 (2008), 404–414.
Provot, S., Nachtrab, G., Paruch, J., Chen, A.P., Silva, A., Kronenberg, H.M., A-raf and B-raf are dispensable for normal endochondral bone development, and parathyroid hormone-related peptide suppresses extracellular signal-regulated kinase activation in hypertrophic chondrocytes. Mol Cell Biol 28 (2008), 344–357.
Shakibaei, M., Schulze-Tanzil, G., de Souza, P., John, T., Rahmanzadeh, M., Rahmanzadeh, R., et al. Inhibition of mitogen-activated protein kinase kinase induces apoptosis of human chondrocytes. J Biol Chem 276 (2001), 13289–13294.
Watanabe, H., de Caestecker, M.P., Yamada, Y., Transcriptional cross-talk between Smad, ERK1/2, and p38 mitogen-activated protein kinase pathways regulates transforming growth factor-beta-induced aggrecan gene expression in chondrogenic ATDC5 cells. J Biol Chem 276 (2001), 14466–14473.
Li, W.Q., Dehnade, F., Zafarullah, M., Oncostatin M-induced matrix metalloproteinase and tissue inhibitor of metalloproteinase-3 genes expression in chondrocytes requires Janus kinase/STAT signaling pathway. J Immunol 166 (2001), 3491–3498.
Espanel, X., Sudol, M., Yes-associated protein and p53-binding protein-2 interact through their WW and SH3 domains. J Biol Chem 276 (2001), 14514–14523.
Lowenstein, E.J., Daly, R.J., Batzer, A.G., Li, W., Margolis, B., Lammers, R., et al. The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signaling. Cell 70 (1992), 431–442.
Rozakis-Adcock, M., McGlade, J., Mbamalu, G., Pelicci, G., Daly, R., Li, W., et al. Association of the Shc and Grb2/Sem5 SH2-containing proteins is implicated in activation of the Ras pathway by tyrosine kinases. Nature 360 (1992), 689–692.
Lories, R.J., Luyten, F.P., The bone-cartilage unit in osteoarthritis. Nat Rev Rheumatol 7 (2011), 43–49.
Goldring, S.R., Goldring, M.B., Changes in the osteochondral unit during osteoarthritis: structure, function and cartilage-bone crosstalk. Nat Rev Rheumatol 12 (2016), 632–644.