Space and Planetary Science; Earth and Planetary Sciences (miscellaneous); Atmospheric Science; Geophysics
Abstract :
[en] Extreme enhancements in the total columns of carbon monoxide (CO), peroxyacetyl nitrate (PAN), ethylene (C2H4), methanol (CH3OH), and formic acid (HCOOH) were observed over the Canadian high Arctic during the period of 17–22 August 2017 by a ground-based Fourier transform infrared (FTIR) spectrometer at Eureka, Nunavut (80.05°N, 86.42°W), and by the Infrared Atmospheric Sounding Interferometer (IASI) satellite instruments. These enhancements have been attributed to wildfires in British Columbia (BC) and the Northwest Territories (NWT) of Canada, and represent the largest short-term perturbations of PAN, C2H4, and HCOOH above ambient concentrations over the 14-year (2006–2020) Eureka time-series. Enhancement ratios, emission ratios, and emission factors relative to CO were calculated for all species for both FTIR and IASI observations. The C2H4 and HCOOH emission factors are significantly larger than previous studies, suggesting unusually high emissions from these fires. The wildfire plumes were also simulated using the GEOS-Chem model. Initial GEOS-Chem simulations displayed a severe under-estimation relative to observations for these fire plumes resulting from the injection height scheme of the model. Sensitivity tests highlighted that injection heights of 12.5 km for BC (based on previous studies) and 10 km for the NWT fires yielded the strongest correlations with ground-based measurements. Applying these injection heights to the model significantly improves the simulated plume transport and agreement with ground- and space-based observations. GEOS-Chem was also used to estimate the magnitude of secondary in-plume production of CH3OH and HCOOH; it was found to be an important component (∼18%) of the enhanced HCOOH columns at Eureka.
Research Center/Unit :
SPHERES - ULiège
Disciplines :
Earth sciences & physical geography
Author, co-author :
Wizenberg, T. ; Department of Physics University of Toronto Toronto ON Canada
Strong, K. ; Department of Physics University of Toronto Toronto ON Canada
Jones, D. B. A. ; Department of Physics University of Toronto Toronto ON Canada
Lutsch, E. ; Department of Physics University of Toronto Toronto ON Canada
Mahieu, Emmanuel ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Groupe infra-rouge de physique atmosphérique et solaire (GIRPAS)
Franco, B. ; Service de Chimie Quantique et Photophysique, Atmospheric Spectroscopy Université Libre de Bruxelles (ULB) Brussels Belgium
Clarisse, L. ; Service de Chimie Quantique et Photophysique, Atmospheric Spectroscopy Université Libre de Bruxelles (ULB) Brussels Belgium
Language :
English
Title :
Exceptional Wildfire Enhancements of PAN, C2H4, CH3OH, and HCOOH Over the Canadian High Arctic During August 2017
Akagi, S. K., Yokelson, R. J., Burling, I. R., Meinardi, S., Simpson, I., Blake, D. R., et al. (2013). Measurements of reactive trace gases and variable O3 formation rates in some South Carolina biomass burning plumes. Atmospheric Chemistry and Physics, 13(3), 1141–1165. https://doi.org/10.5194/acp-13-1141-2013
Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., et al. (2011). Emission factors for open and domestic biomass burning for use in atmospheric models. Atmospheric Chemistry and Physics, 11(9), 4039–4072. https://doi.org/10.5194/acp-11-4039-2011
Alvarado, M. J., Cady-Pereira, K. E., Xiao, Y., Millet, D. B., & Payne, V. H. (2011). Emission ratios for ammonia and formic acid and observations of peroxy acetyl nitrate (PAN) and ethylene in biomass burning smoke as seen by the Tropospheric Emission Spectrometer (TES). Atmosphere, 2(4), 633–654. https://doi.org/10.3390/atmos2040633
Alvarado, M. J., Logan, J. A., Mao, J., Apel, E., Riemer, D., Blake, D., et al. (2010). Nitrogen oxides and PAN in plumes from boreal fires during ARCTAS-B and their impact on ozone: An integrated analysis of aircraft and satellite observations. Atmospheric Chemistry and Physics, 10(20), 9739–9760. https://doi.org/10.5194/acp-10-9739-2010
Andreae, M. O. (2019). Emission of trace gases and aerosols from biomass burning – An updated assessment. Atmospheric Chemistry and Physics, 19(13), 8523–8546. https://doi.org/10.5194/acp-19-8523-2019
Andreae, M. O., & Merlet, P. (2001). Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles, 15(4), 955–966. https://doi.org/10.1029/2000gb001382
Ashworth, K., Chung, S. H., McKinney, K. A., Liu, Y., Munger, J. W., Martin, S. T., & Steiner, A. L. (2016). Modelling bidirectional fluxes of methanol and acetaldehyde with the FORCAsT canopy exchange model. Atmospheric Chemistry and Physics, 16(24), 15461–15484. https://doi.org/10.5194/acp-16-15461-2016
Bader, W., Stavrakou, T., Muller, J.-F., Reimann, S., Boone, C. D., Harrison, J. J., et al. (2014). Long-term evolution and seasonal modulation of methanol above Jungfraujoch (46.5° N, 8.0° E): Optimisation of the retrieval strategy, comparison with model simulations and independent observations. Atmospheric Measurement Techniques, 7(11), 3861–3872. https://doi.org/10.5194/amt-7-3861-2014
Batchelor, R. L., Strong, K., Lindenmaier, R., Mittermeier, R. L., Fast, H., Drummond, J. R., & Fogal, P. F. (2009). A new Bruker IFS 125HR FTIR spectrometer for the Polar Environment Atmospheric Research Laboratory at Eureka, Nunavut, Canada: Measurements and comparison with the existing Bomem DA8 spectrometer. Journal of Atmospheric and Oceanic Technology, 26(7), 1328–1340. https://doi.org/10.1175/2009jtecha1215.1
Bates, K. H., Jacob, D. J., Wang, S., Hornbrook, R. S., Apel, E. C., Kim, M. J., et al. (2021). The global budget of atmospheric methanol: New constraints on secondary, oceanic, and terrestrial sources. Journal of Geophysical Research: Atmospheres, 126(4), e2020JD033439. https://doi.org/10.1029/2020jd033439
BC Wildfire Service. (2017). Wildfire season summary. Province of British Columbia. Retrieved from https://www2.gov.bc.ca/gov/content/safety/wildfire-status/about-bcws/wildfire-history/wildfire-season-summary
Beine, H. J., & Krognes, T. (2000). The seasonal cycle of peroxyacetyl nitrate (PAN) in the European Arctic. Atmospheric Environment, 34(6), 933–940. https://doi.org/10.1016/s1352-2310(99)00288-5
Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., et al. (2001). Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation. Journal of Geophysical Research, 106(D19), 23073–23095. https://doi.org/10.1029/2001jd000807
Bourassa, A. E., Rieger, L. A., Zawada, D. J., Khaykin, S., Thomason, L. W., & Degenstein, D. A. (2019). Satellite limb observations of unprecedented forest fire aerosol in the stratosphere. Journal of Geophysical Research: Atmospheres, 124(16), 9510–9519. https://doi.org/10.1029/2019jd030607
Bridier, I., Caralp, F., Loirat, H., Lesclaux, R., Veyret, B., Becker, K. H., et al. (1991). Kinetic and theoretical studies of the reactions acetylperoxy + nitrogen dioxide + M ⇌ acetyl peroxynitrate + M between 248 and 393 K and between 30 and 760 Torr. The Journal of Physical Chemistry, 95(9), 3594–3600. https://doi.org/10.1021/j100162a031
Cady-Pereira, K. E., Chaliyakunnel, S., Shephard, M. W., Millet, D. B., Luo, M., & Wells, K. C. (2014). HCOOH measurements from space: TES retrieval algorithm and observed global distribution. Atmospheric Measurement Techniques, 7(7), 2297–2311. https://doi.org/10.5194/amt-7-2297-2014
Cady-Pereira, K. E., Shephard, M. W., Millet, D. B., Luo, M., Wells, K. C., Xiao, Y., et al. (2012). Methanol from TES global observations: Retrieval algorithm and seasonal and spatial variability. Atmospheric Chemistry and Physics, 12(17), 8189–8203. https://doi.org/10.5194/acp-12-8189-2012
Chameides, W. L., & Davis, D. D. (1983). Aqueous-phase source of formic acid in clouds. Nature, 304(5925), 427–429. https://doi.org/10.1038/304427a0
Chen, X., Millet, D. B., Neuman, J. A., Veres, P. R., Ray, E. A., Commane, R., et al. (2021). HCOOH in the remote atmosphere: Constraints from Atmospheric Tomography (ATom) airborne observations. ACS Earth and Space Chemistry, 5(6), 1436–1454. https://doi.org/10.1021/acsearthspacechem.1c00049
Chen, X., Millet, D. B., Singh, H. B., Wisthaler, A., Apel, E. C., Atlas, E. L., et al. (2019). On the sources and sinks of atmospheric VOCs: An integrated analysis of recent aircraft campaigns over North America. Atmospheric Chemistry and Physics, 19(14), 9097–9123. https://doi.org/10.5194/acp-19-9097-2019
Clerbaux, C., Boynard, A., Clarisse, L., George, M., Hadji-Lazaro, J., Herbin, H., et al. (2009). Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder. Atmospheric Chemistry and Physics, 9(16), 6041–6054. https://doi.org/10.5194/acp-9-6041-2009
Coheur, P.-F., Clarisse, L., Turquety, S., Hurtmans, D., & Clerbaux, C. (2009). IASI measurements of reactive trace species in biomass burning plumes. Atmospheric Chemistry and Physics, 9(15), 5655–5667. https://doi.org/10.5194/acp-9-5655-2009
Coheur, P.-F., Herbin, H., Clerbaux, C., Hurtmans, D., Wespes, C., Carleer, M., et al. (2007). ACE-FTS observation of a young biomass burning plume: First reported measurements of C2H4, C3H6O, H2CO, and PAN by infrared occultation from space. Atmospheric Chemistry and Physics, 7(20), 5437–5446. https://doi.org/10.5194/acp-7-5437-2007
Dolan, W., Payne, V. H., Kualwik, S. S., & Bowman, K. W. (2016). Satellite observations of ethylene (C2H4) from the Aura Tropospheric Emission Spectrometer: A scoping study. Atmospheric Environment, 141, 388–393. https://doi.org/10.1016/j.atmosenv.2016.07.009
Dufour, G., Boone, C. D., Rinsland, C. P., & Bernath, P. F. (2006). First space-borne measurements of methanol inside aged southern tropical to mid-latitude biomass burning plumes using the ACE-FTS instrument. Atmospheric Chemistry and Physics, 6(11), 3463–3470. https://doi.org/10.5194/acp-6-3463-2006
Dufour, G., Szopa, S., Hauglustaine, D. A., Boone, C. D., Rinsland, C. P., & Bernath, P. F. (2007). The influence of biogenic emissions on upper-tropospheric methanol as revealed from space. Atmospheric Chemistry and Physics, 7(24), 6119–6129. https://doi.org/10.5194/acp-7-6119-2007
Eastham, S. D., & Jacob, D. J. (2017). Limits on the ability of global Eulerian models to resolve intercontinental transport of chemical plumes. Atmospheric Chemistry and Physics, 17(4), 2543–2553. https://doi.org/10.5194/acp-17-2543-2017
Fall, R., & Benson, A. A. (1996). Leaf methanol — The simplest natural product from plants. Trends in Plant Science, 1(9), 296–301. https://doi.org/10.1016/s1360-1385(96)88175-0
Fischer, E. V., Jacob, D. J., Yantosca, R. M., Sulprizio, M. P., Millet, D. B., Mao, J., et al. (2014). Atmospheric peroxyacetyl nitrate (PAN): A global budget and source attribution. Atmospheric Chemistry and Physics, 14(5), 2679–2698. https://doi.org/10.5194/acp-14-2679-2014
Fischer, E. V., Jaffe, D. A., & Weatherhead, E. C. (2011). Free tropospheric peroxyacetyl nitrate (PAN) and ozone at Mount Bachelor: Potential causes of variability and timescale for trend detection. Atmospheric Chemistry and Physics, 11(12), 5641–5654. https://doi.org/10.5194/acp-11-5641-2011
Flannigan, M. D., Logan, K. A., Amiro, B. D., Skinner, W. R., & Stocks, B. J. (2005). Future area burned in Canada. Climatic Change, 72(1–2), 1–16. https://doi.org/10.1007/s10584-005-5935-y
Folberth, G. A., Hauglustaine, D. A., Lathière, J., & Brocheton, F. (2006). Interactive chemistry in the Laboratoire de Météorologie Dynamique General Circulation Model: Model description and impact analysis of biogenic hydrocarbons on tropospheric chemistry. Atmospheric Chemistry and Physics, 6(8), 2273–2319. https://doi.org/10.5194/acp-6-2273-2006
Franco, B., Blumenstock, T., Cho, C., Clarisse, L., Clerbaux, C., Coheur, P.-F., et al. (2021). Ubiquitous atmospheric production of organic acids mediated by cloud droplets. Nature, 593(7858), 233–237. https://doi.org/10.1038/s41586-021-03462-x
Franco, B., Clarisse, L., Stavrakou, T., Müller, J., Taraborrelli, D., Hadji-Lazaro, J., et al. (2020). Spaceborne measurements of formic and acetic acids: A global view of the regional sources. Geophysical Research Letters, 47(4), e2019GL086239. https://doi.org/10.1029/2019gl086239
Franco, B., Clarisse, L., Stavrakou, T., Müller, J., Van Damme, M., Whitburn, S., et al. (2018). A general framework for global retrievals of trace gases from IASI: Application to methanol, formic acid, and PAN. Journal of Geophysical Research: Atmospheres, 123(24), 13,963–13,984. https://doi.org/10.1029/2018jd029633
Franco, B., Clarisse, L., Van Damme, M., Hadji-Lazaro, J., Clerbaux, C., & Coheur, P.-F. (2022). Ethylene industrial emitters seen from space. Nature Communications, 13(1), 6452. https://doi.org/10.1038/s41467-022-34098-8
Freitas, S. R., Longo, K. M., & Andreae, M. O. (2006). Impact of including the plume rise of vegetation fires in numerical simulations of associated atmospheric pollutants. Geophysical Research Letters, 33(17), L17808. https://doi.org/10.1029/2006gl026608
Fromm, M. D., Kablick, G. P., Peterson, D. A., Kahn, R. A., Flower, V. J., & Seftor, C. J. (2021). Quantifying the source term and uniqueness of the august 12, 2017 Pacific Northwest pyrocb event. Journal of Geophysical Research: Atmospheres, 126(13), e2021JD034928. https://doi.org/10.1029/2021jd034928
Galloway, J. N., Likens, G. E., Keene, W. C., & Miller, J. M. (1982). The composition of precipitation in remote areas of the world. Journal of Geophysical Research, 87(C11), 8771. https://doi.org/10.1029/jc087ic11p08771
Gatz, D. F., & Smith, L. (1995). The standard error of a weighted mean concentration—II. Estimating confidence intervals. Atmospheric Environment, 29(11), 1195–1200. https://doi.org/10.1016/1352-2310(94)00209-4
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., et al. (2017). The modern-era retrospective analysis for research and applications, Version 2 (MERRA-2). Journal of Climate, 30(14), 5419–5454. https://doi.org/10.1175/jcli-d-16-0758.1
Gentner, D. R., Worton, D. R., Isaacman, G., Davis, L. C., Dallmann, T. R., Wood, E. C., et al. (2013). Chemical composition of gas-phase organic carbon emissions from motor vehicles and implications for ozone production. Environmental Science & Technology, 47(20), 11837–11848. https://doi.org/10.1021/es401470e
George, M., Clerbaux, C., Bouarar, I., Coheur, P.-F., Deeter, M. N., Edwards, D. P., et al. (2015). An examination of the long-term CO records from MOPITT and IASI: Comparison of retrieval methodology. Atmospheric Measurement Techniques, 8(10), 4313–4328. https://doi.org/10.5194/amt-8-4313-2015
González Abad, G., Bernath, P. F., Boone, C. D., McLeod, S. D., Manney, G. L., & Toon, G. C. (2009). Global distribution of upper tropospheric formic acid from the ACE-FTS. Atmospheric Chemistry and Physics, 9(20), 8039–8047. https://doi.org/10.5194/acp-9-8039-2009
Goode, J. G., Yokelson, R. J., Ward, D. E., Susott, R. A., Babbitt, R. E., Davies, M. A., & Hao, W. M. (2000). Measurements of excess O3, CO2, CO, CH4, C2H4, C2H2, HCN, NO, NH3, HCOOH, CH3COOH, HCHO, and CH3OH in 1997 Alaskan biomass burning plumes by airborne Fourier transform infrared spectroscopy (AFTIR). Journal of Geophysical Research, 105(D17), 22147–22166. https://doi.org/10.1029/2000jd900287
Gordon, I., Rothman, L., Hill, C., Kochanov, R., Tan, Y., Bernath, P., et al. (2017). The HITRAN2016 molecular spectroscopic database. Journal of Quantitative Spectroscopy and Radiative Transfer, 203, 3–69. https://doi.org/10.1016/j.jqsrt.2017.06.038
Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., & Wang, X. (2012). The model of emissions of gases and aerosols from nature Version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions. Geoscientific Model Development, 5(6), 1471–1492. https://doi.org/10.5194/gmd-5-1471-2012
Halofsky, J. E., Peterson, D. L., & Harvey, B. J. (2020). Changing wildfire, changing forests: The effects of climate change on fire regimes and vegetation in the Pacific Northwest, USA. Fire Ecology, 16(1), 4. https://doi.org/10.1186/s42408-019-0062-8
Herbin, H., Hurtmans, D., Clarisse, L., Turquety, S., Clerbaux, C., Rinsland, C. P., et al. (2009). Distributions and seasonal variations of tropospheric ethene (C2H4) from Atmospheric Chemistry Experiment (ACE-FTS) solar occultation spectra. Geophysical Research Letters, 36(4), L04801. https://doi.org/10.1029/2008gl036338
Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen, T., et al. (2018). Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). Geoscientific Model Development, 11(1), 369–408. https://doi.org/10.5194/gmd-11-369-2018
Holloway, T., Levy, H., & Kasibhatla, P. (2000). Global distribution of carbon monoxide. Journal of Geophysical Research, 105(D10), 12123–12147. https://doi.org/10.1029/1999jd901173
Hope, E. S., McKenney, D. W., Pedlar, J. H., Stocks, B. J., & Gauthier, S. (2016). Wildfire suppression costs for Canada under a changing climate. PLoS One, 11(8), e0157425. https://doi.org/10.1371/journal.pone.0157425
Horowitz, L. W., Walters, S., Mauzerall, D. L., Emmons, L. K., Rasch, P. J., Granier, C., et al. (2003). A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2. Journal of Geophysical Research, 108(D24), 4784. https://doi.org/10.1029/2002jd002853
Hurtmans, D., Coheur, P.-F., Wespes, C., Clarisse, L., Scharf, O., Clerbaux, C., et al. (2012). FORLI radiative transfer and retrieval code for IASI. Journal of Quantitative Spectroscopy and Radiative Transfer, 113(11), 1391–1408. https://doi.org/10.1016/j.jqsrt.2012.02.036
Hüve, K., Christ, M., Kleist, E., Uerlings, R., Niinemets, U., Walter, A., & Wildt, J. (2007). Simultaneous growth and emission measurements demonstrate an interactive control of methanol release by leaf expansion and stomata. Journal of Experimental Botany, 58(7), 1783–1793. https://doi.org/10.1093/jxb/erm038
Jacob, D. (2000). Heterogeneous chemistry and tropospheric ozone. Atmospheric Environment, 34(12–14), 2131–2159. https://doi.org/10.1016/s1352-2310(99)00462-8
Jacob, D. J. (1986). Chemistry of OH in remote clouds and its role in the production of formic acid and peroxymonosulfate. Journal of Geophysical Research, 91(D9), 9807. https://doi.org/10.1029/jd091id09p09807
Juncosa Calahorrano, J. F., Lindaas, J., O'Dell, K., Palm, B. B., Peng, Q., Flocke, F., et al. (2020). Daytime oxidized reactive nitrogen partitioning in western U.S. wildfire smoke plumes. Journal of Geophysical Research: Atmospheres, 126(4), e2020JD033484. https://doi.org/10.1029/2020jd033484
Juncosa Calahorrano, J. F., Payne, V. H., Kulawik, S., Ford, B., Flocke, F., Campos, T., & Fischer, E. V. (2021). Evolution of acyl peroxynitrates (PANs) in wildfire smoke plumes detected by the Cross-Track Infrared Sounder (CrIS) over the western U.S. during summer 2018. Geophysical Research Letters, 48(23), e2021gl093405. https://doi.org/10.1029/2021gl093405
Kaiser, J. W., Heil, A., Andreae, M. O., Benedetti, A., Chubarova, N., Jones, L., et al. (2012). Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power. Biogeosciences, 9(1), 527–554. https://doi.org/10.5194/bg-9-527-2012
Kasibhatla, P. S., Levy, H., & Moxim, W. J. (1993). Global NOx, HNO3, PAN, and NOy distributions from fossil fuel combustion emissions: A model study. Journal of Geophysical Research, 98(D4), 7165–7180. https://doi.org/10.1029/92jd02845
Keene, W. C., Galloway, J. N., Likens, G. E., Deviney, F. A., Mikkelsen, K. N., Moody, J. L., & Maben, J. R. (2015). Atmospheric wet deposition in remote regions: Benchmarks for environmental change. Journal of the Atmospheric Sciences, 72(8), 2947–2978. https://doi.org/10.1175/jas-d-14-0378.1
Kerzenmacher, T., Dils, B., Kumps, N., Blumenstock, T., Clerbaux, C., Coheur, P.-F., et al. (2012). Validation of IASI FORLI carbon monoxide retrievals using FTIR data from NDACC. Atmospheric Measurement Techniques, 5(11), 2751–2761. https://doi.org/10.5194/amt-5-2751-2012
Khaykin, S. M., Godin-Beekmann, S., Hauchecorne, A., Pelon, J., Ravetta, F., & Keckhut, P. (2018). Stratospheric smoke with unprecedentedly high backscatter observed by lidars above southern France. Geophysical Research Letters, 45(3), 1639–1646. https://doi.org/10.1002/2017gl076763
Kirchmeier-Young, M. C., Gillett, N. P., Zwiers, F. W., Cannon, A. J., & Anslow, F. S. (2019). Attribution of the influence of human-induced climate change on an extreme fire season. Earth's Future, 7(1), 2–10. https://doi.org/10.1029/2018ef001050
Kloss, C., Berthet, G., Sellitto, P., Ploeger, F., Bucci, S., Khaykin, S., et al. (2019). Transport of the 2017 Canadian wildfire plume to the tropics via the Asian monsoon circulation. Atmospheric Chemistry and Physics, 19(21), 13547–13567. https://doi.org/10.5194/acp-19-13547-2019
Law, K. S., & Stohl, A. (2007). Arctic air pollution: Origins and impacts. Science, 315(5818), 1537–1540. https://doi.org/10.1126/science.1137695
Law, K. S., Stohl, A., Quinn, P. K., Brock, C. A., Burkhart, J. F., Paris, J.-D., et al. (2014). Arctic air pollution: New insights from POLARCAT-IPY. Bulletin of the American Meteorological Society, 95(12), 1873–1895. https://doi.org/10.1175/bams-d-13-00017.1
Lin, H., Jacob, D. J., Lundgren, E. W., Sulprizio, M. P., Keller, C. A., Fritz, T. M., et al. (2021). Harmonized emissions component (HEMCO) 3.0 as a versatile emissions component for atmospheric models: Application in the GEOS-Chem, NASA GEOS, WRF-GC, CESM2, NOAA GEFS-aerosol, and NOAA UFS models. Geoscientific Model Development, 14(9), 5487–5506. https://doi.org/10.5194/gmd-14-5487-2021
Liu, X., Zhang, Y., Huey, L. G., Yokelson, R. J., Wang, Y., Jimenez, J. L., et al. (2016). Agricultural fires in the south eastern U.S. during SEAC4RS: Emissions of trace gases and particles and evolution of ozone, reactive nitrogen, and organic aerosol. Journal of Geophysical Research: Atmospheres, 121(12), 7383–7414. https://doi.org/10.1002/2016jd025040
Lutsch, E., Dammers, E., Conway, S., & Strong, K. (2016). Long-range transport of NH3, CO, HCN, and C2H6 from the 2014 Canadian wildfires. Geophysical Research Letters, 43(15), 8286–8297. https://doi.org/10.1002/2016gl070114
Lutsch, E., Strong, K., Jones, D. B., Blumenstock, T., Conway, S., Fisher, J. A., et al. (2020). Detection and attribution of wildfire pollution in the Arctic and northern midlatitudes using a network of Fourier-transform infrared spectrometers and GEOS-Chem. Atmospheric Chemistry and Physics, 20(21), 12813–12851. https://doi.org/10.5194/acp-20-12813-2020
Lutsch, E., Strong, K., Jones, D. B., Ortega, I., Hannigan, J. W., Dammers, E., et al. (2019). Unprecedented atmospheric ammonia concentrations detected in the high Arctic from the 2017 Canadian wildfires. Journal of Geophysical Research: Atmospheres, 124(14), 8178–8202. https://doi.org/10.1029/2019jd030419
MacDonald, R. C., & Fall, R. (1993). Detection of substantial emissions of methanol from plants to the atmosphere. Atmospheric Environment. Part A. General Topics, 27(11), 1709–1713. https://doi.org/10.1016/0960-1686(93)90233-o
Mahieu, E., Fischer, E. V., Franco, B., Palm, M., Wizenberg, T., Smale, D., et al. (2021). First retrievals of peroxyacetyl nitrate (PAN) from ground-based FTIR solar spectra recorded at remote sites, comparison with model and satellite data. Elementa: Science of the Anthropocene, 9(1), 00027. https://doi.org/10.1525/elementa.2021.00027
Marsh, D. R., Mills, M. J., Kinnison, D. E., Lamarque, J.-F., Calvo, N., & Polvani, L. M. (2013). Climate change from 1850 to 2005 simulated in CESM1(WACCM). Journal of Climate, 26(19), 7372–7391. https://doi.org/10.1175/jcli-d-12-00558.1
Millet, D. B., Baasandorj, M., Farmer, D. K., Thornton, J. A., Baumann, K., Brophy, P., et al. (2015). A large and ubiquitous source of atmospheric formic acid. Atmospheric Chemistry and Physics, 15(11), 6283–6304. https://doi.org/10.5194/acp-15-6283-2015
Millet, D. B., Jacob, D. J., Custer, T. G., de Gouw, J. A., Goldstein, A. H., Karl, T., et al. (2008). New constraints on terrestrial and oceanic sources of atmospheric methanol. Atmospheric Chemistry and Physics, 8(23), 6887–6905. https://doi.org/10.5194/acp-8-6887-2008
Moxim, W. J., Levy, H., & Kasibhatla, P. S. (1996). Simulated global tropospheric PAN: Its transport and impact on NOx. Journal of Geophysical Research, 101(D7), 12621–12638. https://doi.org/10.1029/96jd00338
Mungall, E. L., Abbatt, J. P., Wentzell, J. J., Wentworth, G. R., Murphy, J. G., Kunkel, D., et al. (2018). High gas-phase mixing ratios of formic and acetic acid in the high Arctic. Atmospheric Chemistry and Physics, 18(14), 10237–10254. https://doi.org/10.5194/acp-18-10237-2018
Notholt, J., Toon, G., Jones, N., Griffith, D., & Warneke, T. (2006). Spectral line finding program for atmospheric remote sensing using full radiation transfer. Journal of Quantitative Spectroscopy and Radiative Transfer, 97(1), 112–125. https://doi.org/10.1016/j.jqsrt.2004.12.025
Notholt, J., Toon, G. C., Rinsland, C. P., Pougatchev, N. S., Jones, N. B., Connor, B. J., et al. (2000). Latitudinal variations of trace gas concentrations in the free troposphere measured by solar absorption spectroscopy during a ship cruise. Journal of Geophysical Research, 105(D1), 1337–1349. https://doi.org/10.1029/1999jd900940
Olivella, S., & Solé, A. (2004). Unimolecular decomposition of beta-hydroxyethylperoxy radicals in the ho-initiated oxidation of ethene: A theoretical study. The Journal of Physical Chemistry A, 108(52), 11651–11663. https://doi.org/10.1021/jp045944f
Orlando, J. J., Tyndall, G. S., & Calvert, J. G. (1992). Thermal decomposition pathways for peroxyacetyl nitrate (PAN): Implications for atmospheric methyl nitrate levels. Atmospheric Environment. Part A. General Topics, 26(17), 3111–3118. https://doi.org/10.1016/0960-1686(92)90468-z
Paton-Walsh, C., Jones, N. B., Wilson, S. R., Haverd, V., Meier, A., Griffith, D. W., & Rinsland, C. P. (2005). Measurements of trace gas emissions from Australian forest fires and correlations with coincident measurements of aerosol optical depth. Journal of Geophysical Research, 110(D24), D24305. https://doi.org/10.1029/2005jd006202
Paton-Walsh, C., Wilson, S. R., Jones, N. B., & Griffith, D. W. (2008). Measurement of methanol emissions from Australian wildfires by ground-based solar Fourier transform spectroscopy. Geophysical Research Letters, 35(8), L08810. https://doi.org/10.1029/2007gl032951
Paulot, F., Paynter, D., Ginoux, P., Naik, V., Whitburn, S., Van Damme, M., et al. (2017). Gas-aerosol partitioning of ammonia in biomass burning plumes: Implications for the interpretation of spaceborne observations of ammonia and the radiative forcing of ammonium nitrate. Geophysical Research Letters, 44(15), 8084–8093. https://doi.org/10.1002/2017gl074215
Paulot, F., Wunch, D., Crounse, J. D., Toon, G. C., Millet, D. B., DeCarlo, P. F., et al. (2011). Importance of secondary sources in the atmospheric budgets of formic and acetic acids. Atmospheric Chemistry and Physics, 11(5), 1989–2013. https://doi.org/10.5194/acp-11-1989-2011
Payne, V. H., Alvarado, M. J., Cady-Pereira, K. E., Worden, J. R., Kulawik, S. S., & Fischer, E. V. (2014). Satellite observations of peroxyacetyl nitrate from the AURA Tropospheric Emission Spectrometer. Atmospheric Measurement Techniques, 7(11), 3737–3749. https://doi.org/10.5194/amt-7-3737-2014
Payne, V. H., Kulawik, S. S., Fischer, E. V., Brewer, J. F., Huey, L. G., Miyazaki, K., et al. (2022). Satellite measurements of peroxyacetyl nitrate from the cross-track infrared sounder: Comparison with atom aircraft measurements. Atmospheric Measurement Techniques, 15(11), 3497–3511. https://doi.org/10.5194/amt-15-3497-2022
Peterson, D. A., Campbell, J. R., Hyer, E. J., Fromm, M. D., Kablick, G. P., Cossuth, J. H., & DeLand, M. T. (2018). Wildfire-driven thunderstorms cause a volcano-like stratospheric injection of smoke. NPJ Climate and Atmospheric Science, 1(1), 30. https://doi.org/10.1038/s41612-018-0039-3
Peterson, D. A., Fromm, M. D., McRae, R. H., Campbell, J. R., Hyer, E. J., Taha, G., et al. (2021). Australia's black summer pyrocumulonimbus super outbreak reveals potential for increasingly extreme stratospheric smoke events. NPJ Climate and Atmospheric Science, 4(1), 38. https://doi.org/10.1038/s41612-021-00192-9
Philip, S., Martin, R. V., & Keller, C. A. (2016). Sensitivity of chemistry-transport model simulations to the duration of chemical and transport operators: A case study with GEOS-chem V10-01. Geoscientific Model Development, 9(5), 1683–1695. https://doi.org/10.5194/gmd-9-1683-2016
Pommier, M., Clerbaux, C., & Coheur, P.-F. (2017). Determination of enhancement ratios of HCOOH relative to CO in biomass burning plumes by the Infrared Atmospheric Sounding Interferometer (IASI). Atmospheric Chemistry and Physics, 17(18), 11089–11105. https://doi.org/10.5194/acp-17-11089-2017
Pommier, M., Clerbaux, C., Coheur, P.-F., Mahieu, E., Müller, J.-F., Paton-Walsh, C., et al. (2016). HCOOH distributions from IASI for 2008–2014: Comparison with ground-based FTIR measurements and a global chemistry-transport model. Atmospheric Chemistry and Physics, 16(14), 8963–8981. https://doi.org/10.5194/acp-16-8963-2016
Ranjbar, K., O'Neill, N. T., Lutsch, E., McCullough, E. M., AboEl-Fetouh, Y., Xian, P., et al. (2019). Extreme smoke event over the high Arctic. Atmospheric Environment, 218, 117002. https://doi.org/10.1016/j.atmosenv.2019.117002
Razavi, A., Karagulian, F., Clarisse, L., Hurtmans, D., Coheur, P. F., Clerbaux, C., et al. (2011). Global distributions of methanol and formic acid retrieved for the first time from the IASI/MetOp thermal infrared sounder. Atmospheric Chemistry and Physics, 11(2), 857–872. https://doi.org/10.5194/acp-11-857-2011
Rémy, S., Veira, A., Paugam, R., Sofiev, M., Kaiser, J. W., Marenco, F., et al. (2017). Two global data sets of daily fire emission injection heights since 2003. Atmospheric Chemistry and Physics, 17(4), 2921–2942. https://doi.org/10.5194/acp-17-2921-2017
R'Honi, Y., Clarisse, L., Clerbaux, C., Hurtmans, D., Duflot, V., Turquety, S., et al. (2013). Exceptional emissions of NH3 and HCOOH in the 2010 Russian wildfires. Atmospheric Chemistry and Physics, 13(8), 4171–4181. https://doi.org/10.5194/acp-13-4171-2013
Rinsland, C. P., Dufour, G., Boone, C. D., Bernath, P. F., Chiou, L., Coheur, P.-F., et al. (2007). Satellite boreal measurements over Alaska and Canada during June-July 2004: Simultaneous measurements of upper tropospheric CO, C2H6, HCN, CH3Cl, CH4, C2H2, CH3OH, HCOOH, OCS, and SF6 mixing ratios. Global Biogeochemical Cycles, 21(3), GB3008. https://doi.org/10.1029/2006gb002795
Rinsland, C. P., Paton-Walsh, C., Jones, N. B., Griffith, D. W., Goldman, A., Wood, S. W., et al. (2005). High spectral resolution solar absorption measurements of ethylene in a forest fire smoke plume using HITRAN parameters: Tropospheric vertical profile retrieval. Journal of Quantitative Spectroscopy and Radiative Transfer, 96(2), 301–309. https://doi.org/10.1016/j.jqsrt.2005.03.003
Rodgers, C. D. (2000). Inverse methods for atmospheric sounding: Theory and practice. World Scientific.
Rodgers, C. D., & Connor, B. J. (2003). Intercomparison of remote sounding instruments. Journal of Geophysical Research, 108(D3), 4116. https://doi.org/10.1029/2002jd002299
Rosanka, S., Franco, B., Clarisse, L., Coheur, P.-F., Pozzer, A., Wahner, A., & Taraborrelli, D. (2021). The impact of organic pollutants from Indonesian peatland fires on the tropospheric and lower stratospheric composition. Atmospheric Chemistry and Physics, 21(14), 11257–11288. https://doi.org/10.5194/acp-21-11257-2021
Rothman, L., Gordon, I., Barbe, A., Benner, D., Bernath, P., Birk, M., et al. (2009). The HITRAN 2008 molecular spectroscopic database. Journal of Quantitative Spectroscopy and Radiative Transfer, 110(9–10), 533–572. https://doi.org/10.1016/j.jqsrt.2009.02.013
Sawada, S., & Totsuka, T. (1986). Natural and anthropogenic sources and fate of atmospheric ethylene. Atmospheric Environment, 20(5), 821–832. https://doi.org/10.1016/0004-6981(86)90266-0
Schobesberger, S., Lopez-Hilfiker, F. D., Taipale, D., Millet, D. B., D'Ambro, E. L., Rantala, P., et al. (2016). High upward fluxes of formic acid from a boreal forest canopy. Geophysical Research Letters, 43(17), 9342–9351. https://doi.org/10.1002/2016gl069599
Simpson, I. J., Akagi, S. K., Barletta, B., Blake, N. J., Choi, Y., Diskin, G. S., et al. (2011). Boreal forest fire emissions in fresh Canadian smoke plumes: C1-C10 volatile organic compounds (VOCs), CO2, CO, NO2, NO, HCN, and CH3CN. Atmospheric Chemistry and Physics, 11(13), 6445–6463. https://doi.org/10.5194/acp-11-6445-2011
Singh, H., Chen, Y., Staudt, A., Jacob, D., Blake, D., Heikes, B., & Snow, J. (2001). Evidence from the Pacific troposphere for large global sources of oxygenated organic compounds. Nature, 410(6832), 1078–1081. https://doi.org/10.1038/35074067
Stanevich, I., Jones, D. B., Strong, K., Parker, R. J., Boesch, H., Wunch, D., et al. (2020). Characterizing model errors in chemical transport modeling of methane: Impact of model resolution in versions V9-02 of GEOS-Chem and V35j of its adjoint model. Geoscientific Model Development, 13(9), 3839–3862. https://doi.org/10.5194/gmd-13-3839-2020
Stavrakou, T., Guenther, A., Razavi, A., Clarisse, L., Clerbaux, C., Coheur, P.-F., et al. (2011). First space-based derivation of the global atmospheric methanol emission fluxes. Atmospheric Chemistry and Physics, 11(10), 4873–4898. https://doi.org/10.5194/acp-11-4873-2011
Stavrakou, T., Müller, J.-F., Peeters, J., Razavi, A., Clarisse, L., Clerbaux, C., et al. (2012). Satellite evidence for a large source of formic acid from boreal and tropical forests. Nature Geoscience, 5(1), 26–30. https://doi.org/10.1038/ngeo1354
Stohl, A. (2006). Characteristics of atmospheric transport into the Arctic troposphere. Journal of Geophysical Research, 111(D11), D11306. https://doi.org/10.1029/2005jd006888
Talukdar, R. K., Burkholder, J. B., Schmoltner, A.-M., Roberts, J. M., Wilson, R. R., & Ravishankara, A. R. (1995). Investigation of the loss processes for peroxyacetyl nitrate in the atmosphere: UV photolysis and reaction with OH. Journal of Geophysical Research, 100(D7), 14163. https://doi.org/10.1029/95jd00545
Tereszchuk, K. A., González Abad, G., Clerbaux, C., Hadji-Lazaro, J., Hurtmans, D., Coheur, P.-F., & Bernath, P. F. (2013). ACE-FTS observations of pyrogenic trace species in boreal biomass burning plumes during BORTAS. Atmospheric Chemistry and Physics, 13(9), 4529–4541. https://doi.org/10.5194/acp-13-4529-2013
Tie, X., Guenther, A., & Holland, E. (2003). Biogenic methanol and its impacts on tropospheric oxidants. Geophysical Research Letters, 30(17), 1881. https://doi.org/10.1029/2003gl017167
Tikhonov, A. N. (1963). On the solution of ill-posed problems and the method of regularization. Doklady Akademii Nauk, 151(3), 501–504.
Toon, G. C. (2022). Atmospheric Voigt line list for the TCCON 2020 data release. CaltechDATA. https://doi.org/10.14291/TCCON.GGG2020.ATM.R0. Retrieved from https://data.caltech.edu/records/8972
Toon, G. C., Blavier, J.-F. L., & Sung, K. (2018). Measurements of atmospheric ethene by solar absorption FTIR spectrometry. Atmospheric Chemistry and Physics, 18(7), 5075–5088. https://doi.org/10.5194/acp-18-5075-2018
Torres, O., Bhartia, P. K., Taha, G., Jethva, H., Das, S., Colarco, P., et al. (2020). Stratospheric injection of massive smoke plume from Canadian boreal fires in 2017 as seen by DSCOVR-EPIC, CALIOP, and OMPS-LP observations. Journal of Geophysical Research: Atmospheres, 125(10), e2020JD032579. https://doi.org/10.1029/2020jd032579
Tuazon, E. C., Carter, W. P., & Atkinson, R. (1991). Thermal decomposition of peroxyacetyl nitrate and reactions of acetyl peroxy radicals with nitric oxide and nitrogen dioxide over the temperature range 283-313 K. The Journal of Physical Chemistry, 95(6), 2434–2437. https://doi.org/10.1021/j100159a059
Vander Auwera, J., Fayt, A., Tudorie, M., Rotger, M., Boudon, V., Franco, B., & Mahieu, E. (2014). Self-broadening coefficients and improved line intensities for the ν7 band of ethylene near 10.5 μm, and impact on ethylene retrievals from Jungfraujoch solar spectra. Journal of Quantitative Spectroscopy and Radiative Transfer, 148, 177–185. https://doi.org/10.1016/j.jqsrt.2014.07.003
Viatte, C., Strong, K., Hannigan, J., Nussbaumer, E., Emmons, L. K., Conway, S., et al. (2015). Identifying fire plumes in the Arctic with tropospheric FTIR measurements and transport models. Atmospheric Chemistry and Physics, 15(5), 2227–2246. https://doi.org/10.5194/acp-15-2227-2015
Viatte, C., Strong, K., Paton-Walsh, C., Mendonca, J., O'Neill, N. T., & Drummond, J. R. (2013). Measurements of CO, HCN, and C2H6 total columns in smoke plumes transported from the 2010 Russian boreal forest fires to the Canadian high Arctic. Atmosphere-Ocean, 51(5), 522–531. https://doi.org/10.1080/07055900.2013.823373
Viatte, C., Strong, K., Walker, K. A., & Drummond, J. R. (2014). Five years of CO, HCN, C2H6, C2H2, CH3OH, HCOOH, and H2CO total columns measured in the Canadian high Arctic. Atmospheric Measurement Techniques, 7(6), 1547–1570. https://doi.org/10.5194/amt-7-1547-2014
Vigouroux, C., Stavrakou, T., Whaley, C., Dils, B., Duflot, V., Hermans, C., et al. (2012). FTIR time-series of biomass burning products (HCN, C2H6, C2H2, CH3OH, and HCOOH) at Reunion Island (21° S, 55° E) and comparisons with model data. Atmospheric Chemistry and Physics, 12(21), 10367–10385. https://doi.org/10.5194/acp-12-10367-2012
Wang, Y., Logan, J. A., & Jacob, D. J. (1998). Global simulation of tropospheric O3-NOx-hydrocarbon chemistry: 2. Model evaluation and global ozone budget. Journal of Geophysical Research, 103(D9), 10727–10755. https://doi.org/10.1029/98jd00157
Wells, K. C., Millet, D. B., Cady-Pereira, K. E., Shephard, M. W., Henze, D. K., Bousserez, N., et al. (2014). Quantifying global terrestrial methanol emissions using observations from the TES satellite sensor. Atmospheric Chemistry and Physics, 14(5), 2555–2570. https://doi.org/10.5194/acp-14-2555-2014
Whitburn, S., Van Damme, M., Clarisse, L., Hurtmans, D., Clerbaux, C., & Coheur, P.-F. (2017). IASI-derived NH3 enhancement ratios relative to CO for the tropical biomass burning regions. Atmospheric Chemistry and Physics, 17(19), 12239–12252. https://doi.org/10.5194/acp-17-12239-2017
Whitburn, S., Van Damme, M., Clarisse, L., Turquety, S., Clerbaux, C., & Coheur, P.-F. (2016). Doubling of annual ammonia emissions from the peat fires in Indonesia during the 2015 El Niño. Geophysical Research Letters, 43(20), 11007–11014. https://doi.org/10.1002/2016gl070620
Whitburn, S., Van Damme, M., Kaiser, J., van der Werf, G., Turquety, S., Hurtmans, D., et al. (2015). Ammonia emissions in tropical biomass burning regions: Comparison between satellite-derived emissions and bottom-up fire inventories. Atmospheric Environment, 121, 42–54. https://doi.org/10.1016/j.atmosenv.2015.03.015
Wizenberg, T., Strong, K., Jones, D., Lutsch, E., Mahieu, E., Franco, B., & Clarisse, L. (2022). Replication data for: Exceptional wildfire enhancements of PAN, C2H4, CH3OH, and HCOOH over the Canadian high Arctic during August 2017 [Dataset]. Borealis. https://doi.org/10.5683/SP3/6PBAHK
Yamanouchi, S., Strong, K., Lutsch, E., & Jones, D. B. (2020). Detection of HCOOH, CH3OH, CO, HCN, and C2H6 in wildfire plumes transported over Toronto using ground-based FTIR measurements from 2002–2018. Journal of Geophysical Research: Atmospheres, 125(16), e2019JD031924. https://doi.org/10.1029/2019jd031924
Yokelson, R. J., Crounse, J. D., DeCarlo, P. F., Karl, T., Urbanski, S., Atlas, E., et al. (2009). Emissions from biomass burning in the Yucatan. Atmospheric Chemistry and Physics, 9(15), 5785–5812. https://doi.org/10.5194/acp-9-5785-2009
Yu, K., Keller, C. A., Jacob, D. J., Molod, A. M., Eastham, S. D., & Long, M. S. (2018). Errors and improvements in the use of archived meteorological data for chemical transport modeling: An analysis using GEOS-Chem V11-01 driven by GEOS-5 meteorology. Geoscientific Model Development, 11(1), 305–319. https://doi.org/10.5194/gmd-11-305-2018
Yu, P., Toon, O. B., Bardeen, C. G., Zhu, Y., Rosenlof, K. H., Portmann, R. W., et al. (2019). Black carbon lofts wildfire smoke high into the stratosphere to form a persistent plume. Science, 365(6453), 587–590. https://doi.org/10.1126/science.aax1748
Yu, S. (2000). Role of organic acids (formic, acetic, pyruvic and oxalic) in the formation of cloud condensation nuclei (CCN): A review. Atmospheric Research, 53(4), 185–217. https://doi.org/10.1016/s0169-8095(00)00037-5
Yurganov, L. N. (1997). Seasonal cycles of carbon monoxide over the Arctic and Antarctic: Total columns versus surface data. Atmospheric Research, 44(1–2), 223–230. https://doi.org/10.1016/s0169-8095(97)00003-3
Zander, R., Duchatelet, P., Mahieu, E., Demoulin, P., Roland, G., Servais, C., et al. (2010). Formic acid above the Jungfraujoch during 1985–2007: Observed variability, seasonality, but no long-term background evolution. Atmospheric Chemistry and Physics, 10(20), 10047–10065. https://doi.org/10.5194/acp-10-10047-2010
Zhao, Y., Strong, K., Kondo, Y., Koike, M., Matsumi, Y., Irie, H., et al. (2002). Spectroscopic measurements of tropospheric CO, C2H6, C2H2, and HCN in northern Japan. Journal of Geophysical Research, 107(D18), ACH2-1–ACH2-16. https://doi.org/10.1029/2001JD000748