General Earth and Planetary Sciences; Environmental Science (miscellaneous)
Abstract :
[en] We validate formaldehyde (HCHO) vertical column densities (VCDs) from Ozone Mapping and Profiler Suite Nadir Mapper (OMPS-NM) instruments onboard the Suomi National Polar-orbiting Partnership (Suomi NPP) satellite for 2012–2020 and National Oceanic and Atmospheric Administration-20 (NOAA-20) satellite for 2018–2020, hereafter referred to as OMPS-NPP and OMPS-N20, with ground-based Fourier-Transform Infrared (FTIR) observations of the Network for the Detection of Atmospheric Composition Change (NDACC). OMPS-NPP/N20 HCHO products reproduce seasonal variability at 24 FTIR sites. Monthly variability of OMPS-NPP/N20 has a very good agreement with FTIR, showing correlation coefficients of 0.83 and 0.88, respectively. OMPS-NPP (N20) biases averaged over all sites are −0.9 (4) ± 3 (6)%. However, at clean sites (with VCDs < 4.0 × 1015 molecules cm−2), positive biases of 20 (32) ± 6 (18)% occur for OMPS-NPP (N20). At sites with HCHO VCDs > 4.0 × 1015 molecules cm−2, negative biases of −15% ± 4% appear for OMPS-NPP, but OMPS-N20 shows smaller bias of 0.5% ± 6% due to its smaller ground pixel footprints. Therefore, smaller satellite footprint sizes are important in distinguishing small-scale plumes. In addition, we discuss a bias correction and provide lower limit for the monthly uncertainty of OMPS-NPP/N20 HCHO products. The total uncertainty for OMPS-NPP (N20) at clean sites is 0.7 (0.8) × 1015 molecules cm−2, corresponding to a relative uncertainty of 32 (30)%. In the case of HCHO VCDs > 4.0 × 1015 molecules cm−2, however, the relative uncertainty in HCHO VCDs for OMPS-NPP (N20) decreases to 31 (18)%.
Research Center/Unit :
SPHERES - ULiège
Disciplines :
Earth sciences & physical geography
Author, co-author :
Kwon, H.‐A. ; Center for Astrophysics Harvard & Smithsonian Cambridge MA USA ; Now at the University of Suwon Gyeonggi‐do Republic of Korea
Abad, G. González ; Center for Astrophysics Harvard & Smithsonian Cambridge MA USA
Nowlan, C. R. ; Center for Astrophysics Harvard & Smithsonian Cambridge MA USA
Chong, H.; Center for Astrophysics Harvard & Smithsonian Cambridge MA USA
Souri, A. H. ; Center for Astrophysics Harvard & Smithsonian Cambridge MA USA ; Now at NASA Goddard Space Flight Center Greenbelt MA USA ; Now at Morgan State University Baltimore MA USA
Vigouroux, C. ; Royal Belgian Institute for Space Aeronomy (BIRA‐IASB) Brussels Belgium
Röhling, A. ; Karlsruhe Institute of Technology (KIT) IMK‐ASF Karlsruhe Germany
Kivi, R. ; Finnish Meteorological Institute (FMI) Sodankylä Finland
Makarova, M.; Atmospheric Physics Department Saint Petersburg State University St. Petersburg Russia
Notholt, J. ; Institute of Environmental Physics University of Bremen Bremen Germany
Palm, M. ; Institute of Environmental Physics University of Bremen Bremen Germany
Winkler, H. ; Institute of Environmental Physics University of Bremen Bremen Germany
Té, Y. ; Laboratoire d’Études du Rayonnement et de la Matière en Astrophysique et Atmosphères (LERMA‐IPSL) Sorbonne Université CNRS Observatoire de Paris PSL Université Paris France
Sussmann, R.; Karlsruhe Institute of Technology (KIT) IMK‐IFU Garmisch‐Partenkirchen Germany
Rettinger, M.; Karlsruhe Institute of Technology (KIT) IMK‐IFU Garmisch‐Partenkirchen Germany
Mahieu, Emmanuel ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Groupe infra-rouge de physique atmosphérique et solaire (GIRPAS)
Strong, K. ; Department of Physics University of Toronto Toronto ON Canada
Lutsch, E. ; Department of Physics University of Toronto Toronto ON Canada
Yamanouchi, S. ; Department of Physics University of Toronto Toronto ON Canada
Nagahama, T.; Institute for Space‐Earth Environmental Research (ISEE) Nagoya University Nagoya Japan
Hannigan, J. W. ; Atmospheric Chemistry, Observations & Modeling National Center for Atmospheric Research (NCAR) Boulder CO USA
Zhou, M. ; Institute of Atmospheric Physics Chinese Academy of Sciences (CAS) Beijing China
Murata, I.; Graduate School of Environmental Studies Tohoku University Sendai Japan
Grutter, M. ; Instituto de Ciencias de la Atmósfera y Cambio Climático Universidad Nacional Autónoma de México (UNAM) Mexico City México
Stremme, W.; Instituto de Ciencias de la Atmósfera y Cambio Climático Universidad Nacional Autónoma de México (UNAM) Mexico City México
De Mazière, M.; Royal Belgian Institute for Space Aeronomy (BIRA‐IASB) Brussels Belgium
Jones, N. ; Centre for Atmospheric Chemistry University of Wollongong Wollongong Australia
Smale, D.; National Institute of Water and Atmospheric Research Ltd (NIWA) Lauder New Zealand
Morino, I. ; National Institute for Environmental Studies Tsukuba Japan
NOAA - National Oceanic and Atmospheric Administration NASA - National Aeronautics and Space Administration F.R.S.-FNRS - Fonds de la Recherche Scientifique Office Fédéral de Météorologie et de Climatologie MétéoSuisse
Funding text :
NOAA’s Climate Program Office’s; NASA Science Mission Directorate
Amador-Muñoz, O., Villalobos-Pietrini, R., Miranda, J., & Vera-Avila, L. E. (2011). Organic compounds of PM2.5 in Mexico Valley: Spatial and temporal patterns, behavior and sources. Science of the Total Environment, 409(8), 1453–1465. https://doi.org/10.1016/j.scitotenv.2010.11.026
Bak, J., Baek, K. H., Kim, J. H., Liu, X., Kim, J., & Chance, K. (2019). Cross-evaluation of GEMS tropospheric ozone retrieval performance using OMI data and the use of an ozonesonde dataset over East Asia for validation. Atmospheric Measurement Techniques, 12(9), 5201–5215. https://doi.org/10.5194/amt-12-5201-2019
Bak, J., Liu, X., Kim, J. H., Haffner, D. P., Chance, K., Yang, K., & Sun, K. (2017). Characterization and correction of OMPS nadir mapper measurements for ozone profile retrievals. Atmospheric Measurement Techniques, 10(11), 4373–4388. https://doi.org/10.5194/amt-10-4373-2017
Behrens, L. K., Hilboll, A., Richter, A., Peters, E., Alvarado, L. M. A., Kalisz Hedegaard, A. B., et al. (2019). Detection of outflow of formaldehyde and glyoxal from the African continent to the Atlantic Ocean with a MAX-DOAS instrument. Atmospheric Chemistry and Physics, 19(15), 10257–10278. https://doi.org/10.5194/acp-19-10257-2019
Cao, H., Fu, T. M., Zhang, L., Henze, D. K., Miller, C. C., Lerot, C., et al. (2018). Adjoint inversion of Chinese non-methane volatile organic compound emissions using space-based observations of formaldehyde and glyoxal. Atmospheric Chemistry and Physics, 18(20), 15017–15046. https://doi.org/10.5194/acp-18-15017-2018
Chance, K., Palmer, P. I., Spurr, R. J. D., Martin, R. V., Kurosu, T. P., & Jacob, D. J. (2000). Satellite observations of formaldehyde over North America from GOME. Geophysical Research Letters, 27(21), 3461–3464. https://doi.org/10.1029/2000GL011857
Choi, J., Henze, D. K., Cao, H., Nowlan, C. R., González Abad, G., Kwon, H.-A., et al. (2022). An inversion framework for optimizing non-methane VOC emissions using remote sensing and airborne observations in Northeast Asia during the KORUS-AQ field campaign. Journal of Geophysical Research: Atmospheres, 127, e2021JD035844. https://doi.org/10.1029/2021JD035844
De Mazière, M., Thompson, A. M., Kurylo, M. J., Wild, J. D., Bernhard, G., Blumenstock, T., et al. (2018). The Network for the Detection of Atmospheric Composition Change (NDACC): History, status and perspectives. Atmospheric Chemistry and Physics, 18(7), 4935–4964. https://doi.org/10.5194/acp-18-4935-2018
De Smedt, I., Müller, J.-F., Stavrakou, T., van der A, R., Eskes, H., & Van Roozendael, M. (2008). Twelve years of global observations of formaldehyde in the troposphere using GOME and SCIAMACHY sensors. Atmospheric Chemistry and Physics, 8(16), 4947–4963. https://doi.org/10.5194/acp-8-4947-2008
De Smedt, I., Pinardi, G., Vigouroux, C., Compernolle, S., Bais, A., Benavent, N., et al. (2021). Comparative assessment of TROPOMI and OMI formaldehyde observations and validation against MAX-DOAS network column measurements. Atmospheric Chemistry and Physics, 21(16), 12561–12593. https://doi.org/10.5194/acp-21-12561-2021
De Smedt, I., Stavrakou, T., Hendrick, F., Danckaert, T., Vlemmix, T., Pinardi, G., et al. (2015). Diurnal, seasonal and long-term variations of global formaldehyde columns inferred from combined OMI and GOME-2 observations. Atmospheric Chemistry and Physics, 15(21), 12519–12545. https://doi.org/10.5194/acp-15-12519-2015
De Smedt, I., Theys, N., Yu, H., Danckaert, T., Lerot, C., Compernolle, S., et al. (2018). Algorithm theoretical baseline for formaldehyde retrievals from S5P TROPOMI and from the QA4ECV project. Atmospheric Measurement Techniques, 11(4), 2395–2426. https://doi.org/10.5194/amt-11-2395-2018
De Smedt, I., Van Roozendael, M., Stavrakou, T., Müller, J. F., Lerot, C., Theys, N., et al. (2012). Improved retrieval of global tropospheric formaldehyde columns from GOME-2/MetOp-A addressing noise reduction and instrumental degradation issues. Atmospheric Measurement Techniques, 5(11), 2933–2949. https://doi.org/10.5194/amt-5-2933-2012
Franco, B., Marais, E. A., Bovy, B., Bader, W., Lejeune, B., Roland, G., et al. (2016). Diurnal cycle and multi-decadal trend of formaldehyde in the remote atmosphere near 46°N. Atmospheric Chemistry and Physics, 16(6), 4171–4189. https://doi.org/10.5194/acp-16-4171-2016
Fried, A., Walega, J., Weibring, P., Richter, D., Simpson, I. J., Blake, D. R., et al. (2020). Airborne formaldehyde and volatile organic compound measurements over the Daesan petrochemical complex on Korea’s northwest coast during the Korea–United States Air Quality study: Estimation of emission fluxes and effects on air quality. Elementa: Science of the Anthropocene, 8(1), 121. https://doi.org/10.1525/elementa.2020.121
Gatz, D. F., & Smith, L. (1995). The standard error of a weighted mean concentration—I. Bootstrapping vs other methods. Atmospheric Environment, 29(11), 1185–1193. https://doi.org/10.1016/1352-2310(94)00210-c
Go, S., Kim, J., Mok, J., Irie, H., Yoon, J., Torres, O., et al. (2020). Ground-based retrievals of aerosol column absorption in the UV spectral region and their implications for GEMS measurements. Remote Sensing of Environment, 245, 111759. https://doi.org/10.1016/j.rse.2020.111759
González Abad, G. (2022a). OMPS-N20 L2 NM formaldehyde (HCHO) total column swath orbital V1 [Dataset]. Goddard Earth Sciences Data and Information Services Center (GES DISC). https://doi.org/10.5067/CIYXT9A4I2F4
González Abad, G. (2022b). OMPS-NPP L2 NM Formaldehyde (HCHO) Total Column swath orbital V1 [Dataset]. Goddard Earth Sciences Data and Information Services Center (GES DISC). https://doi.org/10.5067/IIM1GHT07QA8
González Abad, G., Vasilkov, A., Seftor, C., Liu, X., & Chance, K. (2016). Smithsonian Astrophysical Observatory Ozone Mapping and Profiler Suite (SAO OMPS) formaldehyde retrieval. Atmospheric Measurement Techniques, 9(7), 2797–2812. https://doi.org/10.5194/amt-9-2797-2016
Gonzalez-Alonso, L., Val Martin, M., & Kahn, R. A. (2019). Biomass-burning smoke heights over the Amazon observed from space. Atmospheric Chemistry and Physics, 19(3), 1685–1702. https://doi.org/10.5194/acp-19-1685-2019
Hase, F., Hannigan, J. W., Coffey, M. T., Goldman, A., Höpfner, M., Jones, N. B., et al. (2004). Intercomparison of retrieval codes used for the analysis of high-resolution, ground-based FTIR measurements. Journal of Quantitative Spectroscopy and Radiative Transfer, 87(1), 25–52. https://doi.org/10.1016/j.jqsrt.2003.12.008
Kaiser, J., Jacob, D. J., Zhu, L., Travis, K. R., Fisher, J. A., González Abad, G., et al. (2018). High-resolution inversion of OMI formaldehyde columns to quantify isoprene emission on ecosystem-relevant scales: Application to the southeast US. Atmospheric Chemistry and Physics, 18(8), 5483–5497. https://doi.org/10.5194/acp-18-5483-2018
Kang, M., Ahn, M., Liu, X., Jeong, U., & Kim, J. (2020). Spectral calibration algorithm for the Geostationary Environment Monitoring Spectrometer (GEMS). Preprints.
Kang, M., Ahn, M. H., Ko, D. H., Kim, J., Nicks, D., Eo, M., et al. (2022). Characteristics of the spectral response function of Geostationary Environment Monitoring Spectrometer analyzed by ground and in-orbit measurements. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–16. https://doi.org/10.1109/tgrs.2021.3091677
Kim, G., Choi, Y.-S., Park, S. S., & Kim, J. (2021). Effect of solar zenith angle on satellite cloud retrievals based on O2–O2 absorption band. International Journal of Remote Sensing, 42(11), 4224–4240. https://doi.org/10.1080/01431161.2021.1890267
Kim, J., Jeong, U., Ahn, M.-H., Kim, J. H., Park, R. J., Lee, H., et al. (2020). New era of air quality monitoring from space: Geostationary Environment Monitoring Spectrometer (GEMS). Bulletin of the American Meteorological Society, 101(1), E1–E22. https://doi.org/10.1175/BAMS-D-18-0013.1
Kim, M., Kim, J., Torres, O., Ahn, C., Kim, W., Jeong, U., et al. (2018). Optimal estimation-based algorithm to retrieve aerosol optical properties for GEMS measurements over Asia. Remote Sensing, 10(2), 162. https://doi.org/10.3390/rs10020162
Kramarova, N. A., Nash, E. R., Newman, P. A., Bhartia, P. K., McPeters, R. D., Rault, D. F., et al. (2014). Measuring the Antarctic ozone hole with the new Ozone Mapping and Profiler Suite (OMPS). Atmospheric Chemistry and Physics, 14(5), 2353–2361. https://doi.org/10.5194/acp-14-2353-2014
Kwon, H.-A. (2022). Comparable data of OMPS and FTIR formaldehyde observations for the validation of OMPS formaldehyde products [Dataset]. Harvard Dataverse. https://doi.org/10.7910/DVN/MJC7PD
Kwon, H.-A., Park, R. J., González Abad, G., Chance, K., Kurosu, T. P., Kim, J., et al. (2019). Description of a formaldehyde retrieval algorithm for the Geostationary Environment Monitoring Spectrometer (GEMS). Atmospheric Measurement Techniques, 12(7), 3551–3571. https://doi.org/10.5194/amt-12-3551-2019
Kwon, H.-A., Park, R. J., Oak, Y. J., Nowlan, C. R., Janz, S. J., Kowalewski, M. G., et al. (2021). Top-down estimates of anthropogenic VOC emissions in South Korea using formaldehyde vertical column densities from aircraft during the KORUS-AQ campaign. Elementa: Science of the Anthropocene, 9(1), 00109. https://doi.org/10.1525/elementa.2021.00109
Langerock, B., De Mazière, M., Hendrick, F., Vigouroux, C., Desmet, F., Dils, B., & Niemeijer, S. (2015). Description of algorithms for co-locating and comparing gridded model data with remote-sensing observations. Geoscientific Model Development, 8(3), 911–921. https://doi.org/10.5194/gmd-8-911-2015
Li, C., Joiner, J., Krotkov, N. A., & Dunlap, L. (2015). A new method for global retrievals of HCHO total columns from the Suomi National Polar-orbiting Partnership Ozone Mapping and Profiler Suite. Geophysical Research Letters, 42, 2515–2522. https://doi.org/10.1002/2015GL063204
Li, C., Krotkov, N. A., Carn, S., Zhang, Y., Spurr, R. J. D., & Joiner, J. (2017). New-generation NASA Aura Ozone Monitoring Instrument (OMI) volcanic SO2 dataset: Algorithm description, initial results, and continuation with the Suomi-NPP Ozone Mapping and Profiler Suite (OMPS). Atmospheric Measurement Techniques, 10(2), 445–458. https://doi.org/10.5194/amt-10-445-2017
Liao, J., Hanisco, T. F., Wolfe, G. M., St. Clair, J., Jimenez, J. L., Campuzano-Jost, P., et al. (2019). Towards a satellite formaldehyde—In situ hybrid estimate for organic aerosol abundance. Atmospheric Chemistry and Physics, 19(5), 2765–2785. https://doi.org/10.5194/acp-19-2765-2019
Malhi, Y., Roberts, J. T., Betts Richard, A., Killeen Timothy, J., Li, W., & Nobre Carlos, A. (2008). Climate change, deforestation, and the fate of the Amazon. Science, 319(5860), 169–172. https://doi.org/10.1126/science.1146961
Marais, E. A., Jacob, D. J., Jimenez, J. L., Campuzano-Jost, P., Day, D. A., Hu, W., et al. (2016). Aqueous-phase mechanism for secondary organic aerosol formation from isoprene: Application to the southeast United States and co-benefit of SO2 emission controls. Atmospheric Chemistry and Physics, 16(3), 1603–1618. https://doi.org/10.5194/acp-16-1603-2016
NDACC. (2023). Network for the Detection of Atmospheric Composition Change (NDACC) Public Data Access [Dataset]. National Aeronautics and Space Administration (NASA). Retrieved from https://www-air.larc.nasa.gov/missions/ndacc/data.html
Nowlan, C. R., González Abad, G., Kwon, H.-A., Ayazpour, Z., Chan Miller, C., Chance, K., et al. (2022). Global formaldehyde products from the Ozone Mapping and Profiler Suite (OMPS) nadir mappers on Suomi NPP and NOAA-20. Earth and Space Science Open Archive, 54. https://doi.org/10.1002/essoar.10512639.1
Nowlan, C. R., Liu, X., Janz, S. J., Kowalewski, M. G., Chance, K., Follette-Cook, M. B., et al. (2018). Nitrogen dioxide and formaldehyde measurements from the GEOstationary Coastal and Air Pollution Events (GEO-CAPE) airborne simulator over Houston, Texas. Atmospheric Measurement Techniques, 11(11), 5941–5964. https://doi.org/10.5194/amt-11-5941-2018
Park, J., Choi, W., Lee, H.-M., Park, R. J., Kim, S.-Y., Yu, J.-A., et al. (2021). Effect of error in SO2 slant column density on the accuracy of SO2 transport flow rate estimates based on GEMS synthetic radiances. Remote Sensing, 13(15), 3047. https://doi.org/10.3390/rs13153047
Rivera Cárdenas, C., Guarín, C., Stremme, W., Friedrich, M. M., Bezanilla, A., Rivera Ramos, D., et al. (2021). Formaldehyde total column densities over Mexico city: Comparison between multi-axis differential optical absorption spectroscopy and solar-absorption Fourier Transform Infrared measurements. Atmospheric Measurement Techniques, 14(1), 595–613. https://doi.org/10.5194/amt-14-595-2021
Rodgers, C. D., & Connor, B. J. (2003). Intercomparison of remote sounding instruments. Journal of Geophysical Research, 108(D3), 4116. https://doi.org/10.1029/2002JD002299
Schroeder, J. R., Crawford, J. H., Fried, A., Walega, J., Weinheimer, A., Wisthaler, A., et al. (2017). New insights into the column CH2O/NO2 ratio as an indicator of near-surface ozone sensitivity. Journal of Geophysical Research: Atmospheres, 122, 8885–8907. https://doi.org/10.1002/2017JD026781
Souri, A. H., Chance, K., Bak, J., Nowlan, C. R., González Abad, G., Jung, Y., et al. (2021). Unraveling pathways of elevated ozone induced by the 2020 lockdown in Europe by an observationally constrained regional model using TROPOMI. Atmospheric Chemistry and Physics, 21(24), 18227–18245. https://doi.org/10.5194/acp-21-18227-2021
Souri, A. H., Nowlan, C. R., González Abad, G., Zhu, L., Blake, D. R., Fried, A., et al. (2020). An inversion of NOx and non-methane volatile organic compound (NMVOC) emissions using satellite observations during the KORUS-AQ campaign and implications for surface ozone over East Asia. Atmospheric Chemistry and Physics, 20(16), 9837–9854. https://doi.org/10.5194/acp-20-9837-2020
Spurr, R., & Christi, M. (2019). The LIDORT and VLIDORT linearized scalar and vector discrete ordinate radiative transfer models: Updates in the last 10 years. In A. Kokhanovsky (Ed.), Springer series in light scattering: Volume 3: Radiative transfer and light scattering (pp. 1–62). Springer International Publishing.
Stavrakou, T., Müller, J. F., Bauwens, M., De Smedt, I., Van Roozendael, M., De Mazière, M., et al. (2015). How consistent are top-down hydrocarbon emissions based on formaldehyde observations from GOME-2 and OMI? Atmospheric Chemistry and Physics, 15(20), 11861–11884. https://doi.org/10.5194/acp-15-11861-2015
Su, W., Liu, C., Hu, Q., Zhang, C., Liu, H., Xia, C., et al. (2022). First global observation of tropospheric formaldehyde from Chinese GaoFen-5 satellite: Locating source of volatile organic compounds. Environmental Pollution, 297, 118691. https://doi.org/10.1016/j.envpol.2021.118691
Torres, O. (2019). OMPS-NPP L2 NM aerosol index swath orbital V2. Goddard Earth Sciences Data and Information Services Center (GES DISC).
Torres, O., Bhartia, P. K., Jethva, H., & Ahn, C. (2018). Impact of the Ozone Monitoring Instrument row anomaly on the long-term record of aerosol products. Atmospheric Measurement Techniques, 11(5), 2701–2715. https://doi.org/10.5194/amt-11-2701-2018
Travis, K. R., Judd, L. M., Crawford, J. H., Chen, G., Szykman, J., Whitehill, A., et al. (2022). Can column formaldehyde observations inform air quality monitoring strategies for ozone and related photochemical oxidants? Journal of Geophysical Research: Atmospheres, 127, e2022JD036638. https://doi.org/10.1029/2022JD036638
Vigouroux, C., Bauer Aquino, C. A., Bauwens, M., Becker, C., Blumenstock, T., De Mazière, M., et al. (2018). NDACC harmonized formaldehyde time series from 21 FTIR stations covering a wide range of column abundances. Atmospheric Measurement Techniques, 11(9), 5049–5073. https://doi.org/10.5194/amt-11-5049-2018
Vigouroux, C., Langerock, B., Bauer Aquino, C. A., Blumenstock, T., Cheng, Z., De Mazière, M., et al. (2020). TROPOMI–Sentinel-5 Precursor formaldehyde validation using an extensive network of ground-based Fourier-Transform Infrared stations. Atmospheric Measurement Techniques, 13(7), 3751–3767. https://doi.org/10.5194/amt-13-3751-2020
Wittrock, F., Richter, A., Oetjen, H., Burrows, J. P., Kanakidou, M., Myriokefalitakis, S., et al. (2006). Simultaneous global observations of glyoxal and formaldehyde from space. Geophysical Research Letters, 33, L16804. https://doi.org/10.1029/2006GL026310
Yang, K., Carn, S. A., Ge, C., Wang, J., & Dickerson, R. R. (2014). Advancing measurements of tropospheric NO2 from space: New algorithm and first global results from OMPS. Geophysical Research Letters, 41, 4777–4786. https://doi.org/10.1002/2014GL060136
Yang, K., Dickerson, R. R., Carn, S. A., Ge, C., & Wang, J. (2013). First observations of SO2 from the satellite Suomi NPP OMPS: Widespread air pollution events over China. Geophysical Research Letters, 40, 4957–4962. https://doi.org/10.1002/grl.50952
York, D., Evensen, N. M., Martı́nez, M. L., & De Basabe Delgado, J. (2004). Unified equations for the slope, intercept, and standard errors of the best straight line. American Journal of Physics, 72(3), 367–375. https://doi.org/10.1119/1.1632486
Zhu, L., González Abad, G., Nowlan, C. R., Chan Miller, C., Chance, K., Apel, E. C., et al. (2020). Validation of satellite formaldehyde (HCHO) retrievals using observations from 12 aircraft campaigns. Atmospheric Chemistry and Physics, 20(20), 12329–12345. https://doi.org/10.5194/acp-20-12329-2020
Zhu, L., Jacob, D. J., Kim, P. S., Fisher, J. A., Yu, K., Travis, K. R., et al. (2016). Observing atmospheric formaldehyde (HCHO) from space: Validation and intercomparison of six retrievals from four satellites (OMI, GOME2A, GOME2B, OMPS) with SEAC4RS aircraft observations over the southeast US. Atmospheric Chemistry and Physics, 16(21), 13477–13490. https://doi.org/10.5194/acp-16-13477-2016
Zoogman, P., Liu, X., Suleiman, R. M., Pennington, W. F., Flittner, D. E., Al-Saadi, J. A., et al. (2017). Tropospheric Emissions: Monitoring of Pollution (TEMPO). Journal of Quantitative Spectroscopy and Radiative Transfer, 186, 17–39. https://doi.org/10.1016/j.jqsrt.2016.05.008