[en] A new sensitive and selective analytical methodology to quantify glyphosate (GLY), aminomethylphosphonic acid (AMPA), and glufosinate (GLU) in both soil and earthworms (Allolobophora chlorotica) was developed. The extraction and purification methods were optimized. The samples were extracted with various aqueous solutions (HNO3, H2O, KOH and borate buffer) and derivatized with 9-Fluorenylmethyl chloroformate (FMOCCl). To optimize the extraction step, a method to remove the excess FMOCCl was applied based on liquid-liquid extraction with diethyl ether. The purification of derivatized extracts was carried out using XLB solid phase extraction (SPE) cartridges before internal standard quantification by liquid chromatography coupled to tandem mass spectrometry (LC/MS/MS). The elution step was optimized to obtain the best recoveries possible, which was with acidic methanol (1% formic acid) (67% for GLY, 70% for GLU and 65% for AMPA). The extraction and purification method followed by analysis of the two herbicides and AMPA in soils using LC/MS/MS determined limit of quantification (LOQ) values of 0.030 μg g - 1 for GLY, 0.025 μg g - 1 for AMPA and 0.020 µg g - 1 for GLU . For earthworms, LOQ were 0.23 μg g - 1 for GLY, 0.20 μg g - 1 for AMPA and 0.12 μg g - 1 for GLU. . The developed method was applied to determine these compounds in natural soils and earthworms.
Disciplines :
Chemistry
Author, co-author :
Delhomme, Olivier; Université de Strasbourg, CNRS-UMR 7515, ICPEES, 67087, Strasbourg, France, Université de Lorraine, 57070, Metz, France
Rodrigues, Anaïs ; Université de Liège - ULiège > Molecular Systems (MolSys) ; Université de Strasbourg, CNRS-UMR 7515, ICPEES, 67087, Strasbourg, France
Hernandez, Ana; Université de Strasbourg, CNRS-UMR 7515, ICPEES, 67087, Strasbourg, France
Chimjarn, Supansa; Université de Strasbourg, CNRS-UMR 7515, ICPEES, 67087, Strasbourg, France
Bertrand, Colette ; Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 78026, Versailles, France
Bourdat-Deschamps, Marjolaine; Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 78850, Thiverval-Grignon, France
Fritsch, Clémentine; Laboratoire Chrono-environnement, UMR 6249 CNRS - Université de Franche-Comté Usc INRAE, 16 route de Gray 25030 Besançon cedex, France
Pelosi, Céline; INRAE, Avignon Université, UMR EMMAH, 84000, Avignon, France
Nélieu, Sylvie; Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 78850, Thiverval-Grignon, France
Millet, Maurice; Université de Strasbourg, CNRS-UMR 7515, ICPEES, 67087, Strasbourg, France
Language :
English
Title :
A method to assess glyphosate, glufosinate and aminomethylphosphonic acid in soil and earthworms.
INRAE - Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
Funding text :
This study was carried out within the framework of the “PING” research project, funded by the Métaprogramme INRAE SMaCH Call 2017. The study also benefited from the samples collected during the “RESCAPE” research project, led by the Ministry for Agriculture and Food and the Ministry for an Ecological and Solidary Transition, with the financial support of the French Biodiversity Agency on “Resistance and Pesticides”, with the fees for diffuse pollution coming from the Ecophyto Plan through the national agency ONEMA. We thank the ZAPVS for help accessing the field plots.
Kissane, Z., J.M. Shephard The rise of glyphosate and new opportunities for biosentinel early-warning studies. Conserv. Biol. 31:6 (2017), 1293–1300 https://doi.org/10.1111/cobi.12955.
Székács, A., B. Darvas Re-registration Challenges of Glyphosate in the European Union. Front. Environ. Sci. 6 (2018), 1–35 10.3389/fenvs.2018.00078.
Mallat, E., D. Barceló Analysis and degradation study of glyphosate and of aminomethylphosphonic acid in natural waters by means of polymeric and ion-exchange solid-phase extraction columns followed by ion chromatography-post-column derivatization with fluorescence detection. J. Chromatogr. A 823 (1998), 129–136.
Accinelli, C., Screpanti, C., Vicari, A., P. Catizone Influence of insecticidal toxins from Bacillus thuringiensis subsp. kurstaki on the degradation of glyphosate and glufosinate-ammonium in soil samples. Agric. Ecosyst. Environ. 103 (2004), 497–507.
Dollinger, J., Dages, C., M. Voltz Glyphosate sorption to soils and sediments predicted by pedotransfer functions. Environ. Chem. Lett. 13 (2015), 293–307.
Silva, V., Montanarella, L., Jones, A., Fernández-Ugalde, O., Mol, H.G.J., Ritsema, C.J., V. Geissen Distribution of glyphosate and aminomethylphosphonic acid (AMPA) in agricultural topsoils of the European Union. Sci. Total Environ. 621 (2018), 1352–1359 https://doi.org/10.1016/j.scitotenv.2017.10.093.
Sousa, M.G.D., da Silva, A.C., Araujo, R.D., R.M. Rigotto Evaluation of the atmospheric contamination level for the use of herbicide glyphosate in the northeast region of Brazil. Environ. Monit. Assess., 191, 2019, 11.
E.A. Scribner, W.A. Battaglin, R.J. Gilliom, M.T. Meyer Concentrations of glyphosate, its degradation product, aminomethylphosphonic acid, and glufosinate in ground- and surface-water, rainfall, and soil samples collected in the United States, 2001-06. U.S. Geological Survey Scientific Investigations Report 2007-5122, 111 p, 2020.
Druart, C., Millet, M., Schleifer, R., Delhomme, O., A. de Vaufleury Glyphosate and glufosinate-based herbicides: fate in soil, transfer to and effects on land snails. J. Soils Sediments 11 (2011), 1373–1384.
King, R.A., Vaughan, I.P., Bell, J.R., Bohan, D.A., W.O.C. Symondson Prey choice by carabid beetles feeding on an earthworm community analysed using species- and lineage-specific PCR primers. Mol. Ecol. 19 (2010), 1721–1732 https://doi.org/10.1111/j.1365-294X.2010.04602.x.
Liu, T., Chen, X., Gong, X., Lubbers, I.M., Jiang, Y., Feng, W., Li, X., Whalen, J.K., Bonkowski, M., Griffiths, B.S., Hu, F., M. Liu Earthworms Coordinate Soil Biota to Improve Multiple Ecosystem Functions. Curr. Biol. 29 (2019), 3420–3429 https://doi.org/10.1016/j.cub.2019.08.045.
van Groenigen, J.W., Lubbers, I.M., Vos, H.M.J., Brown, G.G., De Deyn, G.B., van Groenigen, K.J., Earthworms increase plant production: a meta-analysis. Sci. Rep., 4, 2014, 6365 https://doi.org/10.1038/srep06365.
Yasmin, S., D'Souza, D., Effect of pesticides on the reproductive output of Eisenia fetida. Bull. Environ. Contam. Toxicol. 79 (2007), 529–532.
Correia, F.V., J.C. Moreira Effects of glyphosate and 2,4-D on earthworms (Eisenia foetida) in laboratory tests. Bull. Environ. Contam. Toxicol. 85 (2010), 264–268.
M.T. Rose, T.R. Cavagnaro,C.A. Scanlan, T.J. Rose, T. Vancov, S. Kimber, I.R. Kennedy, R.S. Kookana, L. Van Zwieten Impact of Herbicides on Soil Biology and Function. In: Sparks, D.L. (Ed.), Advances in Agronomy, 136 (2016). Elsevier Academic Press Inc, San Diego, pp. 133-220.
Gill, J.P.K., Sethi, N., Mohan, A., Datta, S., M. Girdhar Glyphosate toxicity for animals. Environ. Chem. Lett. 16 (2018), 401–426.
Zaller, J.G., Heigl, F., Ruess, L., A. Grabmaier Glyphosate herbicide affects belowground interactions between earthworms and symbiotic mycorrhizal fungi in a model ecosystem. Sci. Rep., 4, 2014, 5634.
Subramaniam, V., P.E. Hoggard Metal complexes of glyphosate. J. Agric. Food Chem. 36 (1988), 1326–1329.
Sundaram, A., Sundaram, K.M.S., Solubility products of six metal-glyphosate complexes in water and forestry soils, and their influence on glyphosate toxicity to plants. J. Environ. Sci. Health B 32 (1997), 583–598.
Stalikas, C.D., C.N. Konidari Analytical methods to determine phosphonic and amino acid group-containing pesticides. J. Chromatogr. A 907 (2001), 1–19.
Royer, A., Beguin, S., Tabet, J.C., Hulot, S., Reding, M.A., P.Y. Communal Determination of Glyphosate and Aminomethylphosphonic Acid Residues in Water by Gas Chromatography with Tandem Mass Spectrometry after Exchange Ion Resin Purification and Derivatization. Application on Vegetable Matrixes. Anal. Chem. 72 (2000), 3826–3832.
Hu, J.Y., Chen, C.L., Li, J.Z., A Simple Method for the Determination of Glyphosate Residues in Soil by Capillary Gas Chromatography with Nitrogen Phosphorus. J. Anal. Chem. 63 (2008), 371–375.
Zhu, Y., Zhang, F., Tong, C., W. Liu Determination of glyphosate by ion chromatography. J. Chromatogr. A 850 (1999), 297–301.
Guo, H., Riter, L.S., Wujcik, C.E., D.W. Armstrong Direct and sensitive determination of glyphosate and aminomethylphosphonic acid in environmental water samples by high performance liquid chromatography coupled to electrospray tandem mass spectrometry. J. Chromatogr. A 1443 (2016), 93–100.
Chen, Z.L., He, W.X., Beer, M., Megharaj, M., R. Naidu Speciation of glyphosate, phosphate and aminomethylphosphonic acid in soil extracts by ion chromatography with inductively coupled plasma mass spectrometry with an octopole reaction system. Talanta 78 (2009), 852–856.
Le Bot, B., Colliaux, K., Pelle, D., Briens, C., Seux, R., M. Clement Optimization and performance evaluation of the analysis of glyphosate and AMPA in water by HPLC with fluorescence detection. Chromatographia 56 (2002), 161–164.
Ghanem, A., Bados, P., Kerhoas, L., Dubroca, J., J. Einhorn Glyphosate and AMPA Analysis in Sewage Sludge by LC-ESI-MS/MS after FMOC Derivatization on Strong Anion-Exchange Resin as Solid Support. Anal. Chem. 79 (2007), 3794–3801.
Nedelkoska, T.V., G.K.C. Low High-performance liquid chromatographic determination of glyphosate in water and plant material after pre-column derivatisation with 9-fluorenylmethyl chloroformate. Anal. Chim. Acta 511 (2004), 145–153.
Druart, C., Delhomme, O., de Vaufleury, A., Ntcho, E., M. Millet Optimization of extraction procedure and chromatographic separation of glyphosate, glufosinate and aminomethylphosphonic acid in soil. Anal. Bioanal. Chem. 399 (2011), 1725–1732 https://doi.org/10.1007/s00216-010-4468-z.
Guo, Z.H., Cai, Q., Z. Yang Determination of glyphosate and phosphate in water by ion chromatography—Inductively coupled plasma mass spectrometry detection. J. Chromatogr. A 1100 (2005), 160–167.
Arkan, T., I. Molnar-Perl The role of derivatization techniques in the analysis of glyphosate and aminomethyl-phosphonic acid by chromatography. Microchem. J. 121 (2015), 99–106.
Ibanez, M., Pozo, O.J., Sancho, J.V., Lopez, F.J., Hernandez, F., Residue determination of glyphosate, glufosinate and aminomethylphosphonic acid in water and soil samples by liquid chromatography coupled to electrospray tandem mass spectrometry. J. Chromatogr. A 1081 (2005), 145–155 https://doi.org/10.1016/j.chroma.2005.05.041.
Pelosi, C., Toutous, L., Chiron, F., Dubs, F., Hedde, M., A. Muratet Reduction of pesticide use can increase earthworm populations in wheat crops in a European temperate region. Agric. Ecosys. Environ. 181:1 (2013), 223–230.
Bretagnolle, V., Berthet, E., N.Gross, B.Gauffre, Plumejeaud, C., Houte, S., Badenhausser, I., Monceau, K., Allier F, F., Monestiez, P., S. Gaba Towards sustainable and multifunctional agriculture in farmland landscapes: lessons from the integrative approach of a French LTSER platform. Sci. Tot. Environ. 627 (2018), 822–834 https://doi.org/10.1016/j.scitotenv.2018.01.142.
P. Byambas, A. Lemtiri, J.L. Hornick, T. Bengone Ndong, F. Francis Rôles et caractéristiques morphologiques du ver de terre Eudrilus eugeniae (synthèse bibliographique). Biotechnologie, Agronomie, société et Environnement, volume 21 (2017). https://doi.org/10.25518/1780-4507.16259.
Chamkasem, N., T. Harmon Direct determination of glyphosate, glufosinate, and AMPA in soybean and corn by liquid chromatography/tandem mass spectrometry. Anal. Bioanal. Chem. 408 (2016), 4995–5004 https://doi.org/0.1007/s00216-016-9597-6.
Schrübbers, C., Masís-Mora, M., Carazo Rojas, E., Valverde, B.E., Christensen, J.H., N. Cedergreen Analysis of glyphosate and aminomethylphosphonic acid in leaves from Coffea arabica using high performance liquid chromatography with quadrupole mass spectrometry detection. Talanta 146 (2016), 609–620.
Rampazzo Todorovic, G., Mentler, A., Popp, M., Hann, S., Köllensperger, G., Rampazzo, N., W.E.H. Blum Determination of Glyphosate and AMPA in Three Representative Agricultural Austrian Soils with a HPLC-MS/MS Method. Soil and Sediment Contamination. An International Journal 22 (2013), 332–350 https://doi.org/10.1080/15320383.2013.726296.
Soracco, C.G., Villarreal, R., Lozano, L.A., Vittori, S., Melani, E.S., D.J.G. Marino Glyphosate dynamics in a soil under conventional and no-till systems duringa soybean growing season. Geoderma 323 (2018), 13–21 https://doi.org/10.1016/j.geoderma.2018.02.041.
Erban, T., Stehlik, M., Sopko, B., Markovic, M., Seifrtova, M., Halesova, T., P. Kovaricek The different behaviors of glyphosate and AMPA in compost-amended soil. Chemosphere 207 (2018), 78–83 https://doi.org/10.1016/j.chemosphere.2018.05.004.
Bento, C.P.M., Yang, X.M., Gort, G., Xue, S., van Dam, R., Zomer, P., Mol, H.G.J., Ritsema, C.J., V. Geissen Persistence of glyphosate and aminomethylphosphonic acid in loess soil under different combinations of temperature, soil moisture and light/darkness. Sci. Tot. Environ. 572 (2016), 301–311 http://dx.doi.org/10.1016/j.scitotenv.2016.07.215.
Sun, L.S., Kong, D.Y., Gu, W.D., Guo, X.Y., Tao, W.Q., Shan, Z.J., Wang, Y., N. Wang Determination of glyphosate in soil/sludge by high performance liquid chromatography. J. Chromatogr. A 1502 (2017), 8–13 http://dx.doi.org/10.1016/j.chroma.2017.04.018.
Botero-Coy, A.M., Ibanez, M., Sancho, J.V., F. Hernandez Improvements in the analytical methodology for the residue determination of the herbicide glyphosate in soils by liquid chromatography coupled to mass spectrometry. J. Chromatogr. A 1292 (2013), 132–141 http://dx.doi.org/10.1016/j.chroma.2012.12.007.
Karasali, H., Pavlidis, G., A. Marouso Poulou Investigation of the presence of glyphosate and its major metabolite AMPA in Greek soils. Environ. Sci. Pollut. Res. 26 (2019), 36308–36321 https://doi.org/10.1007/s11356-019-06523-x.
Lupi, L., Miglioranza, K.S.B., Aparicio, V.C., Marino, D., Bedmar, F., D.A. Wunderli Occurrence of glyphosate and AMPA in an agricultural watershed from the southeastern region of Argentina. Sci. Tot. Environ. 536 (2015), 687–694 http://dx.doi.org/10.1016/j.scitotenv.2015.07.090.
Primost, J.E., Marino, D.J.G., Aparicio, V.C., Costa, J.L., P. Carriquiborde Glyphosate and AMPA, “pseudo-persistent” pollutants under realworld agricultural management practices in the Mesopotamic Pampas agroecosystem. Argentina. Environ. Pollut. 229 (2017), 771–779 http://dx.doi.org/10.1016/j.envpol.2017.06.006.
Mamy, L., E. Barriuso Glyphosate adsorption in soils compared to herbicides replaced with the introduction of glyphosate resistant crops. Chemosphere 61 (2005), 844–855 https://doi.org/10.1016/j.chemosphere.2005.04.051.
Contardo-Jara, V., Klingelmann, E., Wiegand, C., Bioaccumulation of glyphosate and its formulation Roundup Ultra in Lumbriculus variegatus and its effects on biotransformation and antioxidant enzymes. Environ. Pollut. 157 (2009), 57–63 https://doi.org/10.1016/j.envpol.2008.07.027.