apple orchard; biomonitoring; pesticides; snails; Agricultural areas; Apple orchards; Biomonitoring; Biomonitors; Low-costs; Monitoring programmes; Nonvolatile; Occurrence and distribution; Pesticide emission; Snail; Environmental Science (miscellaneous); Atmospheric Science
Abstract :
[en] The intensive use of pesticides in agricultural areas and the resulting effects have created a need to develop monitoring programs for their active assessment at low cost. This research entails a biomonitoring study of the pesticides in an apple orchard, using juvenile Cornu aspersum (O. F. Müller, 1774) snails exposed in field microcosms. The snails were deployed at three different locations in the orchard area and were used to assess the temporal biomonitoring of 100 different semi-volatile and non-volatile pesticides. The study was performed over an 18-week period and targeted the center, the border, and the outside of the orchard. Results showed that greater levels of pesticides were detected at the center of the orchard as compared to the other sites. The type and level of the applied pesticide influenced its environmental dissipation, as significantly greater levels of semi-volatile pesticides were accumulated by the caged snails in comparison to non-volatile pesticides. The presence of semi-volatile pesticides in the snails outside the orchard revealed the usefulness of these species in the biomonitoring of off-site pesticide emissions. The findings of this study showed that C. aspersum can serve as a reliable and effective model organism for the active biomonitoring of pesticide emissions in agricultural sites.
Millet, Maurice; Institute of Chemistry and Processes for Energy, Environment and Health ICPEES, UMR 7515 Group of Physical Chemistry of the Atmosphere, University of Strasbourg, Strasbourg, France
Khoury, Dani ; Institute of Chemistry and Processes for Energy, Environment and Health ICPEES, UMR 7515 Group of Physical Chemistry of the Atmosphere, University of Strasbourg, Strasbourg, France
Rodrigues, Anaïs ; Université de Liège - ULiège > Molecular Systems (MolSys) ; Institute of Chemistry and Processes for Energy, Environment and Health ICPEES, UMR 7515 Group of Physical Chemistry of the Atmosphere, University of Strasbourg, Strasbourg, France
Harb, Moustapha; Civil Engineering Department, Lebanese American University, Beirut, Lebanon
Akoury, Elias ; Department of Natural Sciences, Lebanese American University, Beirut, Lebanon
Tokajian, Sima ; Department of Natural Sciences, Lebanese American University, Beirut, Lebanon
Wazne, Mahmoud; Civil Engineering Department, Lebanese American University, Beirut, Lebanon
Language :
English
Title :
Snails as Temporal Biomonitors of the Occurrence and Distribution of Pesticides in an Apple Orchard
Popp J. Pető K. Nagy J. Pesticide productivity and food security. A review Agron. Sustain. Dev. 2013 33 243 255 10.1007/s13593-012-0105-x
FAO World Food and Agriculture-Statistical Pocketbook 2019 Food & Agriculture Org Rome, Italy 2019
Liang Z. Mahmoud Abdelshafy A. Luo Z. Belwal T. Lin X. Xu Y. Wang L. Yang M. Qi M. Dong Y. et al. Occurrence, detection, and dissipation of pesticide residue in plant-derived foodstuff: A state-of-the-art review Food Chem. 2022 384 132494 10.1016/j.foodchem.2022.132494 35189435
Aktar W. Sengupta D. Chowdhury A. Impact of pesticides use in agriculture: Their benefits and hazards Interdiscip. Toxicol. 2009 2 1 12 10.2478/v10102-009-0001-7 21217838
Osteen C. Livingston M. Pest management practices Agric. Resour. Environ. Indic. 2006 4 129 138
FAOSTAT Agriculture Organization of the United Nations FAO Statistical Database Available online: https://www.fao.org/faostat/en/#home (accessed on 3 May 2022)
Román C. Peris M. Esteve J. Tejerina M. Cambray J. Vilardell P. Planas S. Pesticide dose adjustment in fruit and grapevine orchards by DOSA3D: Fundamentals of the system and on-farm validation Sci. Total Environ. 2022 808 152158 10.1016/j.scitotenv.2021.152158
Markó V. Elek Z. Kovács-Hostyánszki A. Kőrösi Á. Somay L. Földesi R. Varga Á. Iván Á. Báldi A. Landscapes, orchards, pesticides–Abundance of beetles (Coleoptera) in apple orchards along pesticide toxicity and landscape complexity gradients Agric. Ecosyst. Environ. 2017 247 246 254 10.1016/j.agee.2017.06.038
Le Navenant A. Brouchoud C. Capowiez Y. Rault M. Suchail S. How lasting are the effects of pesticides on earwigs? A study based on energy metabolism, body weight and morphometry in two generations of Forficula auricularia from apple orchards Sci. Total Environ. 2021 758 143604 10.1016/j.scitotenv.2020.143604
Baba S. Malik H. Mir S. Hamid Y. Kachroo M. Externalities of pesticide application on apple in Kashmir Valley Agric. Econ. Res. Rev. 2017 30 81 92 10.5958/0974-0279.2017.00007.6
Simon S. Brun L. Guinaudeau J. Sauphanor B. Pesticide use in current and innovative apple orchard systems Agron. Sustain. Dev. 2011 31 541 555 10.1007/s13593-011-0003-7
Sharma A. Kumar V. Shahzad B. Tanveer M. Sidhu G.P.S. Handa N. Kohli S.K. Yadav P. Bali A.S. Parihar R.D. Worldwide pesticide usage and its impacts on ecosystem SN Appl. Sci. 2019 1 1446 10.1007/s42452-019-1485-1
Rasool S. Rasool T. Gani K.M. A review of interactions of pesticides within various interfaces of intrinsic and organic residue amended soil environment Chem. Eng. J. Adv. 2022 11 100301 10.1016/j.ceja.2022.100301
Van Zelm R. Larrey-Lassalle P. Roux P. Bridging the gap between life cycle inventory and impact assessment for toxicological assessments of pesticides used in crop production Chemosphere 2014 100 175 181 10.1016/j.chemosphere.2013.11.037
Pimentel D. Amounts of pesticides reaching target pests: Environmental impacts and ethics J. Agric. Environ. Ethics 1995 8 17 29 10.1007/BF02286399
Soheilifard F. Marzban A. Ghaseminejad Raini M. Taki M. van Zelm R. Chemical footprint of pesticides used in citrus orchards based on canopy deposition and off-target losses Sci. Total Environ. 2020 732 139118 10.1016/j.scitotenv.2020.139118
Farahy O. Laghfiri M. Bourioug M. Aleya L. Overview of pesticide use in Moroccan apple orchards and its effects on the environment Curr. Opin. Environ. Sci. Health 2021 19 100223 10.1016/j.coesh.2020.10.011
Panico S.C. van Gestel C.A.M. Verweij R.A. Rault M. Bertrand C. Menacho Barriga C.A. Coeurdassier M. Fritsch C. Gimbert F. Pelosi C. Field mixtures of currently used pesticides in agricultural soil pose a risk to soil invertebrates Environ. Pollut. 2022 305 119290 10.1016/j.envpol.2022.119290
Andreu V. Picó Y. Determination of currently used pesticides in biota Anal. Bioanal. Chem. 2012 404 2659 2681 10.1007/s00216-012-6331-x
Damalas C.A. Eleftherohorinos I.G. Pesticide exposure, safety issues, and risk assessment indicators Int. J. Environ. Res. Public Health 2011 8 1402 1419 10.3390/ijerph8051402
WorldBank World Development Report 2008: Agriculture for Development The World Bank Washington, DC, USA 2007
Kim K.-H. Kabir E. Jahan S.A. Exposure to pesticides and the associated human health effects Sci. Total Environ. 2017 575 525 535 10.1016/j.scitotenv.2016.09.009
Knapke E.T. Magalhaes D.d.P. Dalvie M.A. Mandrioli D. Perry M.J. Environmental and occupational pesticide exposure and human sperm parameters: A Navigation Guide review Toxicology 2022 465 153017 10.1016/j.tox.2021.153017
Nicolopoulou-Stamati P. Maipas S. Kotampasi C. Stamatis P. Hens L. Chemical pesticides and human health: The urgent need for a new concept in agriculture Front. Public Health 2016 4 148 10.3389/fpubh.2016.00148 27486573
Yusà V. Coscollà C. Mellouki W. Pastor A. de la Guardia M. Sampling and analysis of pesticides in ambient air J. Chromatogr. A 2009 1216 2972 2983 10.1016/j.chroma.2009.02.019 19246043
La Cecilia D. Dax A. Ehmann H. Koster M. Singer H. Stamm C. Continuous high-frequency pesticide monitoring to observe the unexpected and the overlooked Water Res. X 2021 13 100125 10.1016/j.wroa.2021.100125 34816114
Murschell T. Farmer D.K. Real-time measurement of herbicides in the atmosphere: A case study of MCPA and 2, 4-D during field application Toxics 2019 7 40 10.3390/toxics7030040
Tuduri L. Millet M. Briand O. Montury M. Passive air sampling of semi-volatile organic compounds TrAC Trends Anal. Chem. 2012 31 38 49 10.1016/j.trac.2011.08.007
Hayward S.J. Gouin T. Wania F. Comparison of four active and passive sampling techniques for pesticides in air Environ. Sci. Technol. 2010 44 3410 3416 10.1021/es902512h
Górecki T. Namieśnik J. Passive sampling TrAC Trends Anal. Chem. 2002 21 276 291 10.1016/S0165-9936(02)00407-7
Wang J. Tuduri L. Mercury M. Millet M. Briand O. Montury M. Sampling atmospheric pesticides with SPME: Laboratory developments and field study Environ. Pollut. 2009 157 365 370 10.1016/j.envpol.2008.10.006
Fan Z.-H.T. Passive air sampling: Advantages, limitations, and challenges Epidemiology 2011 22 S132 10.1097/01.ede.0000392075.06031.d9
Levy M. Al-Alam J. Delhomme O. Millet M. An integrated extraction method coupling pressurized solvent extraction, solid phase extraction and solid-phase micro extraction for the quantification of selected organic pollutants in air by gas and liquid chromatography coupled to tandem mass spectrometry Microchem. J. 2020 157 104889 10.1016/j.microc.2020.104889
Hawker D.W. Clokey J. Gorji S.G. Verhagen R. Kaserzon S.L. Chapter 3—Monitoring techniques–Grab and passive sampling Emerging Freshwater Pollutants Dalu T. Tavengwa N.T. Elsevier Amsterdam, The Netherlands 2022 25 48
Gil Y. Sinfort C. Brunet Y. Polveche V. Bonicelli B. Atmospheric loss of pesticides above an artificial vineyard during air-assisted spraying Atmos. Environ. 2007 41 2945 2957 10.1016/j.atmosenv.2006.12.019
Bourodimos G. Koutsiaras M. Psiroukis V. Balafoutis A. Fountas S. Development and field evaluation of a spray drift risk assessment tool for vineyard spraying application Agriculture 2019 9 181 10.3390/agriculture9080181
Al-Alam J. Chbani A. Faljoun Z. Millet M. The use of vegetation, bees, and snails as important tools for the biomonitoring of atmospheric pollution—A review Environ. Sci. Pollut. Res. 2019 26 9391 9408 10.1007/s11356-019-04388-8
Ştefănuţ S. Manole A. Ion M.C. Constantin M. Banciu C. Onete M. Manu M. Vicol I. Moldoveanu M.M. Maican S. Developing a novel warning-informative system as a tool for environmental decision-making based on biomonitoring Ecol. Indic. 2018 89 480 487 10.1016/j.ecolind.2018.02.020
Morrison S.A. Belden J.B. Development of Helisoma trivolvis pond snails as biological samplers for biomonitoring of current-use pesticides Environ. Toxicol. Chem. 2016 35 2320 2329 10.1002/etc.3400
Dhiman V. Pant D. Environmental biomonitoring by snails Biomarkers 2021 26 221 239 10.1080/1354750X.2020.1871514
Radwan M. El-Gendy K. Gad A. Biomarker responses in terrestrial gastropods exposed to pollutants: A comprehensive review Chemosphere 2020 257 127218 10.1016/j.chemosphere.2020.127218
Baroudi F. Al-Alam J. Chimjarn S. Haddad K. Fajloun Z. Delhomme O. Millet M. Use of Helix aspersa and Pinus nigra as Bioindicators to Study Temporal Air Pollution in Northern Lebanon Int. J. Environ. Res. 2022 16 4 10.1007/s41742-021-00385-3
Radwan M. El-Gendy K. Gad A. Biomarkers of oxidative stress in the land snail, Theba pisana for assessing ecotoxicological effects of urban metal pollution Chemosphere 2010 79 40 46 10.1016/j.chemosphere.2010.01.056
Carbone D. Faggio C. Helix aspersa as sentinel of development damage for biomonitoring purpose: A validation study Mol. Reprod. Dev. 2019 86 1283 1291 10.1002/mrd.23117
Scheifler R. De Vaufleury A. Coeurdassier M. Crini N. Badot P.M. Transfer of Cd, Cu, Ni, Pb, and Zn in a soil-plant-invertebrate food chain: A microcosm study Environ. Toxicol. Chem. Int. J. 2006 25 815 822 10.1897/04-675R.1
Berger B. Dallinger R. Terrestrial snails as quantitative indicators of environmental metal pollution Environ. Monit. Assess. 1993 25 65 84 10.1007/BF00549793
Regoli F. Gorbi S. Fattorini D. Tedesco S. Notti A. Machella N. Bocchetti R. Benedetti M. Piva F. Use of the land snail Helix aspersa as sentinel organism for monitoring ecotoxicologic effects of urban pollution: An integrated approach Environ. Health Perspect. 2006 114 63 69 10.1289/ehp.8397
Druart C. Millet M. Scheifler R. Delhomme O. Raeppel C. de Vaufleury A. Snails as indicators of pesticide drift, deposit, transfer and effects in the vineyard Sci. Total Environ. 2011 409 4280 4288 10.1016/j.scitotenv.2011.07.006
Gibbs J.L. Yost M.G. Negrete M. Fenske R.A. Passive sampling for indoor and outdoor exposures to chlorpyrifos, azinphos-methyl, and oxygen analogs in a rural agricultural community Environ. Health Perspect. 2017 125 333 341 10.1289/EHP425
Gomot-de Vaufleury A. Bispo A. Methods for toxicity assessment of contaminated soil by oral or dermal uptake in land snails. 1. Sublethal effects on growth Environ. Sci. Technol. 2000 34 1865 1870 10.1021/es9907212
Staley Z.R. Harwood V.J. Rohr J.R. A synthesis of the effects of pesticides on microbial persistence in aquatic ecosystems Crit. Rev. Toxicol. 2015 45 813 836 10.3109/10408444.2015.1065471
Coutellec M.-A. Delous G. Cravedi J.-P. Lagadic L. Effects of the mixture of diquat and a nonylphenol polyethoxylate adjuvant on fecundity and progeny early performances of the pond snail Lymnaea stagnalis in laboratory bioassays and microcosms Chemosphere 2008 73 326 336 10.1016/j.chemosphere.2008.05.068
Elias D. Bernot M.J. Effects of individual and combined pesticide commercial formulations exposure to egestion and movement of common freshwater snails, Physa acuta and Helisoma anceps Am. Midl. Nat. 2017 178 97 111 10.1674/0003-0031-178.1.97
D2974-07 Standard Test Methods for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils ASTM West Conshohocken, PA, USA 2007
Al-Alam J. Baroudi F. Chbani A. Fajloun Z. Millet M. A multiresidue method for the analysis of pesticides, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls in snails used as environmental biomonitors J. Chromatogr. A 2020 1621 461006 10.1016/j.chroma.2020.461006
El Hawari K. Mokh S. Al Iskandarani M. Halloum W. Jaber F. Pesticide residues in Lebanese apples and health risk assessment Food Addit. Contam. Part B 2019 12 81 89 10.1080/19393210.2018.1564370 30642226
Bedos C. Cellier P. Calvet R. Barriuso E. Gabrielle B. Mass transfer of pesticides into the atmosphere by volatilization from soils and plants: Overview Agronomie 2002 22 21 33 10.1051/agro:2001003
Arias-Estévez M. López-Periago E. Martínez-Carballo E. Simal-Gándara J. Mejuto J.-C. García-Río L. The mobility and degradation of pesticides in soils and the pollution of groundwater resources Agric. Ecosyst. Environ. 2008 123 247 260 10.1016/j.agee.2007.07.011
Glotfelty D. Schomburg C. Volatilization of pesticides from soil React. Mov. Org. Chem. Soils 1989 22 181 207
Rao P. Davidson J. Estimation of pesticide retention and transformation parameters required in nonpoint source pollution models Environ. Impact Nonpoint Source Pollut. 1980 23 67
Silva V. Mol H.G.J. Zomer P. Tienstra M. Ritsema C.J. Geissen V. Pesticide residues in European agricultural soils—A hidden reality unfolded Sci. Total Environ. 2019 653 1532 1545 10.1016/j.scitotenv.2018.10.441
Carlon C. Derivation Methods of Soil Screening Values in Europe: A Review of National Procedures Towards Harmonisation: A Report of the ENSURE Action EUR-OP Brussels, Belgium 2007
Rafique N. Tariq S.R. Ahmed D. Monitoring and distribution patterns of pesticide residues in soil from cotton/wheat fields of Pakistan Environ. Monit. Assess. 2016 188 695 10.1007/s10661-016-5668-6
Muendo B.M. Lalah J.O. Getenga Z.M. Behavior of pesticide residues in agricultural soil and adjacent River Kuywa sediment and water samples from Nzoia sugarcane belt in Kenya Environmentalist 2012 32 433 444 10.1007/s10669-012-9407-4
Riedo J. Wettstein F.E. Rösch A. Herzog C. Banerjee S. Büchi L. Charles R. Wächter D. Martin-Laurent F. Bucheli T.D. Widespread occurrence of pesticides in organically managed agricultural soils—The ghost of a conventional agricultural past? Environ. Sci. Technol. 2021 55 2919 2928 10.1021/acs.est.0c06405
Rana A. Baig N. Saleh T.A. Electrochemically pretreated carbon electrodes and their electroanalytical applications—A review J. Electroanal. Chem. 2019 833 313 332 10.1016/j.jelechem.2018.12.019
EU EU Pesticides Database Available online: https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/mrls/?event=download.MRL (accessed on 4 May 2022)
Berg F. Kubiak R. Benjey W. Majewski M. Yates S. Reeves G. Smelt J. Van der Linden A. Emission of pesticides into the air Fate of Pesticides in the Atmosphere: Implications for Environmental Risk Assessment Springer New York, NY, USA 1999 195 218
Bidleman T.F. Leone A.D. Wong F. Van Vliet L. Szeto S. Ripley B.D. Emission of legacy chlorinated pesticides from agricultural and orchard soils in British Columbia, Canada Environ. Toxicol. Chem. Int. J. 2006 25 1448 1457 10.1897/05-361R.1
Information N.C.f.B. PubChem Annotation Record for MYCLOBUTANIL, Source: Hazardous Substances Data Bank (HSDB) Available online: https://pubchem.ncbi.nlm.nih.gov/source/hsdb/6708#section=Hazardous-Substances-DataBank-Number (accessed on 3 May 2022)
Gunstone T. Cornelisse T. Klein K. Dubey A. Donley N. Pesticides and soil invertebrates: A hazard assessment Front. Environ. Sci. 2021 9 122 10.3389/fenvs.2021.643847
Spengler J.D. Samet J.M. McCarthy J.F. Indoor Air Quality Handbook McGraw-Hill Education Berkshire, UK 2001
Andreev R. Kutinkova H. Resistance to aphids and scale insects in nine apple cultivars J. Fruit Ornam. Plant Res. 2004 12 215 221
Itziou A. Dimitriadis V. Introduction of the land snail Eobania vermiculata as a bioindicator organism of terrestrial pollution using a battery of biomarkers Sci. Total Environ. 2011 409 1181 1192 10.1016/j.scitotenv.2010.12.009
Hong S.-W. Zhao L. Zhu H. CFD simulation of pesticide spray from air-assisted sprayers in an apple orchard: Tree deposition and off-target losses Atmos. Environ. 2018 175 109 119 10.1016/j.atmosenv.2017.12.001
Holownicki R. Doruchowski G. Godyn A. Swiechowski W. Effects of air jet adjustment on spray losses in orchard Asp. Appl. Biol. 2000 57 293 300
Savoca D. Pace A. Bioaccumulation, biodistribution, toxicology and biomonitoring of organofluorine compounds in aquatic organisms Int. J. Mol. Sci. 2021 22 6276 10.3390/ijms22126276
Spacie A. Hamelink J.L. Alternative models for describing the bioconcentration of organics in fish Environ. Toxicol. Chem. Int. J. 1982 1 309 320 10.1002/etc.5620010406
Veith G.D. DeFoe D.L. Bergstedt B.V. Measuring and estimating the bioconcentration factor of chemicals in fish J. Fish. Board Can. 1979 36 1040 1048 10.1139/f79-146
Handy R. Clark N. Boyle D. Vassallo J. Green C. Nasser F. Botha T. Wepener V. van den Brink N. Svendsen C. The bioaccumulation testing strategy for nanomaterials: Correlations with particle properties and a meta-analysis of in vitro fish alternatives to in vivo fish tests Environ. Sci. Nano 2022 9 684 701 10.1039/D1EN00694K
Burkhard L.P. Arnot J.A. Embry M.R. Farley K.J. Hoke R.A. Kitano M. Leslie H.A. Lotufo G.R. Parkerton T.F. Sappington K.G. Comparing laboratory and field measured bioaccumulation endpoints Integr. Environ. Assess. Manag. 2012 8 17 31 10.1002/ieam.260
Workgroup U.S.E.P.A.B.A. Bioaccumulation Testing and Interpretation for the Purpose of Sediment Quality Assessment: Status and Needs US Environmental Protection Agency Washington, DC, USA 2000 Volume 2