Aging; Exercise; HIIT; Nutrition; Obesity; Orthopedics and Sports Medicine; Physical Therapy, Sports Therapy and Rehabilitation; General Medicine
Abstract :
[en] A 12-week intervention involving high-intensity interval training (HIIT) with or without citrulline (CIT) supplementation induced adaptations in the serum metabolome of obese older adults through significant changes in 44 metabolites.Changes in 23 metabolites were observed when a CIT supplementation was administered along with a 12-week HIIT intervention.TG (16:1/18:1/16:0) correlated with several adiposity parameters including leptin, triglycerides, legs lean mass.Aspartic acid correlated with several adiposity parameters including leptin, LDL cholesterol as well as android, arms and trunk fat mass.
Disciplines :
Geriatrics
Author, co-author :
Youssef, Layale ; T3S INSERM U1124, Université Paris Cité, Paris, France ; École de Kinésiologie et des Sciences de l'Activité Physique (EKSAP), Université de Montréal, Montréal (QC), Canada ; Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, Canada
Durand, Sylvère; INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris, France ; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, AMMICa US23/CNRS UMS3655, Villejuif, France
Aprahamian, Fanny; INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris, France ; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, AMMICa US23/CNRS UMS3655, Villejuif, France
Lefevre, Deborah; INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris, France ; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, AMMICa US23/CNRS UMS3655, Villejuif, France
Bourgin, Melanie; INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris, France ; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, AMMICa US23/CNRS UMS3655, Villejuif, France
Maiuri, Maria Chiara; INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris, France ; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, AMMICa US23/CNRS UMS3655, Villejuif, France
Dulac, Maude; Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, Canada ; Groupe de Recherche en Activité Physique Adaptée, Université du Québec à Montréal, Montréal, Canada ; Département de biologie, Université du Québec à Montréal, Montréal, Canada ; Research Institute of the McGill University Health Center (MUHC), Montréal (QC), Canada
Hajj-Boutros, Guy; Groupe de Recherche en Activité Physique Adaptée, Université du Québec à Montréal, Montréal, Canada ; Research Institute of the McGill University Health Center (MUHC), Montréal (QC), Canada
Marcangeli, Vincent; Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, Canada ; Groupe de Recherche en Activité Physique Adaptée, Université du Québec à Montréal, Montréal, Canada ; Département de biologie, Université du Québec à Montréal, Montréal, Canada
Buckinx, Fanny ; Université de Liège - ULiège > Département des sciences de la santé publique > Santé publique, Epidémiologie et Economie de la santé ; Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, Canada ; Département des sciences de l'activité physique, Université du Québec à Montréal, Montréal, Canada
Peyrusqué, Eva; Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, Canada ; Groupe de Recherche en Activité Physique Adaptée, Université du Québec à Montréal, Montréal, Canada ; Département des sciences de l'activité physique, Université du Québec à Montréal, Montréal, Canada
Morais, José A; Research Institute of the McGill University Health Center (MUHC), Montréal (QC), Canada
Gaudreau, Pierrette; Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montréal (QC), Canada ; Département de Médecine, Université de Montréal, Montréal (QC), Canada
Gouspillou, Gilles; Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, Canada ; Groupe de Recherche en Activité Physique Adaptée, Université du Québec à Montréal, Montréal, Canada ; Département des sciences de l'activité physique, Université du Québec à Montréal, Montréal, Canada
Kroemer, Guido; INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris, France ; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, AMMICa US23/CNRS UMS3655, Villejuif, France
Aubertin-Leheudre, Mylène; Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, Canada ; Groupe de Recherche en Activité Physique Adaptée, Université du Québec à Montréal, Montréal, Canada ; Département des sciences de l'activité physique, Université du Québec à Montréal, Montréal, Canada
Noirez, Philippe; T3S INSERM U1124, Université Paris Cité, Paris, France ; Groupe de Recherche en Activité Physique Adaptée, Université du Québec à Montréal, Montréal, Canada ; Département des sciences de l'activité physique, Université du Québec à Montréal, Montréal, Canada ; UFR STAPS, Performance Santé Métrologie Société (PSMS), Université de Reims Champagne Ardenne, Reims, France ; Institut de Recherche Médicale et d'Épidémiologie du Sport (IRMES), INSEP, Université Paris Cité, Paris, France
Allerton, T. D., Proctor, D. N., Stephens, J. M., Dugas, T. R., Spielmann, G., & Irving, B. A. (2018). l-Citrulline Supplementation: Impact on cardiometabolic health. Nutrients, 10 (7).
Aubertin-Leheudre, M., & Buckinx, F. (2020). Effects of Citrulline alone or combined with exercise on muscle mass, muscle strength, and physical performance among older adults. Current Opinion in Clinical Nutrition & Metabolic Care, 23 (1), 8–16. https://doi.org/10.1097/MCO.0000000000000617
Barkhidarian, B., Khorshidi, M., Shab-Bidar, S., & Hashemi, B. (2019). Effects of L-citrulline supplementation on blood pressure: A systematic review and meta-analysis. Avicenna Journal of Phytomedicine, 9 (1), 10–20.
Buckinx, F., Gouspillou, G., Carvalho, L. P., Marcangeli, V., El Hajj Boutros, G., Dulac, M., et al. (2018). Effect of high-intensity interval training combined with L-citrulline supplementation on functional capacities and muscle function in dynapenic-obese older adults. Journal of Clinical Medicine, 7 (12).
Cassidy, S., Thoma, C., Houghton, D., & Trenell, M. I. (2017). High-intensity interval training: a review of its impact on glucose control and cardiometabolic health. Diabetologia, 60 (1), 7–23. https://doi.org/10.1007/s00125-016-4106-1
Curis, E., Nicolis, I., Moinard, C., Osowska, S., Zerrouk, N., Benazeth, S., et al. (2005). Almost all about citrulline in mammals. Amino Acids, 29 (3), 177–205. https://doi.org/10.1007/s00726-005-0235-4
Deda, O., Gika, H. G., Taitzoglou, I., Raikos, N., & Theodoridis, G. (2017). Impact of exercise and aging on Rat urine and blood metabolome. An LC-MS based metabolomics longitudinal study. Metabolites, 7 (1).
Duft, R. G., Castro, A., Chacon-Mikahil, M. P. T., & Cavaglieri, C. R. (2017). Metabolomics and Exercise: possibilities and perspectives. Motriz: Revista de Educação Física, 23 (2).
Fallahi, A., Gaeini, A., Shekarfroush, S., & Khoshbaten, A. (2015). Cardioprotective effect of high intensity interval training and nitric oxide metabolites (NO2 (-), NO3 (-)). Iranian Journal of Public Health, 44 (9), 1270–1276.
Ginguay, A., Regazzetti, A., Laprevote, O., Moinard, C., De Bandt, J.-P., Cynober, L., et al. (2019). Citrulline prevents age-related LTP decline in old rats. Science, 9 (1), 20138.
Gonzales, J. U., Raymond, A., Ashley, J., & Kim, Y. (2017). Does l-citrulline supplementation improve exercise blood flow in older adults? Experimental Physiology, 102 (12), 1661–1671. https://doi.org/10.1113/EP086587
Grace, F., Herbert, P., Elliott, A. D., Richards, J., Beaumont, A., & Sculthorpe, N. F. (2018). High intensity interval training (HIIT) improves resting blood pressure, metabolic (MET) capacity and heart rate reserve without compromising cardiac function in sedentary aging men. Experimental Gerontology, 109, 75–81. https://doi.org/10.1016/j.exger.2017.05.010
Joffin, N., Jaubert, A. M., Bamba, J., Barouki, R., Noirez, P., & Forest, C. (2015). Acute induction of uncoupling protein 1 by citrulline in cultured explants of white adipose tissue from lean and high-fat-diet-fed rats. Adipocyte, 4 (2), 129–134. https://doi.org/10.4161/21623945.2014.989748
Johnson, L. C., Parker, K., Aguirre, B. F., Nemkov, T. G., 'Alessandro, D., Johnson, A., A, S., et al. (2019). The plasma metabolome as a predictor of biological aging in humans. Geroscience, 41 (6), 895–906. https://doi.org/10.1007/s11357-019-00123-w
Kolovou, G. D., Kolovou, V., & Mavrogeni, S. (2014). We are ageing. Biomed Research International, 2014:808307.
MacInnis, M. J., & Gibala, M. J. (2017). Physiological adaptations to interval training and the role of exercise intensity. The Journal of Physiology, 595 (9), 2915–2930. https://doi.org/10.1113/JP273196
MacMicking, J., Xie, Q. W., & Nathan, C. (1997). Nitric oxide and macrophage function. Annual Review of Immunology, 15 (1), 323–350. https://doi.org/10.1146/annurev.immunol.15.1.323
MacMicking, J. D., Nathan, C., Hom, G., Chartrain, N., Fletcher, D. S., Trumbauer, M., et al. (1995). Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase. Cell, 81 (4), 641–650. https://doi.org/10.1016/0092-8674(95)90085-3
Marcangeli, V., Youssef, L., Dulac, M., Carvalho, L. P., Hajj-Boutros, G., Reynaud, O., et al. (2022). Impact of high-intensity interval training with or without l-citrulline on physical performance, skeletal muscle, and adipose tissue in obese older adults. Journal of Cachexia, Sarcopenia and Muscle, 13 (3), 1526–1540. https://doi.org/10.1002/jcsm.12955
Miyajima, M. (2020). Amino acids: key sources for immunometabolites and immunotransmitters. International Immunology, 32 (7), 435–446. https://doi.org/10.1093/intimm/dxaa019
Moinard, C., Nicolis, I., Neveux, N., Darquy, S., Bénazeth, S., & Cynober, L. (2008). Dose-ranging effects of citrulline administration on plasma amino acids and hormonal patterns in healthy subjects: the Citrudose pharmacokinetic study. British Journal of Nutrition, 99 (4), 855–862. https://doi.org/10.1017/S0007114507841110
Mukherjee, K., Edgett, B. A., Burrows, H. W., Castro, C., Griffin, J. L., Schwertani, A. G., et al. (2014). Whole blood transcriptomics and urinary metabolomics to define adaptive biochemical pathways of high-intensity exercise in 50-60 year old masters athletes. PLoS ONE, 9 (3), e92031. https://doi.org/10.1371/journal.pone.0092031
Pellegrino, J. K., Anthony, T. G., Gillies, P., & Arent, S. M. (2022). The exercise metabolome: acute aerobic and anaerobic signatures. Journal of the International Society of Sports Nutrition, 19 (1), 603–622. https://doi.org/10.1080/15502783.2022.2115858
Rebholz, C. M., Lichtenstein, A. H., Zheng, Z., Appel, L. J., & Coresh, J. (2018). Serum untargeted metabolomic profile of the Dietary Approaches to Stop Hypertension (DASH) dietary pattern. The American Journal of Clinical Nutrition, 108 (2), 243–255. https://doi.org/10.1093/ajcn/nqy099
Saoi, M., Li, A., McGlory, C., Stokes, T., von Allmen, M. T., Phillips, S. M., et al. (2019). Metabolic perturbations from step reduction in older persons at risk for sarcopenia: Plasma biomarkers of abrupt changes in physical activity. Metabolites, 9 (7).
Schwedhelm, E., Maas, R., Freese, R., Jung, D., Lukacs, Z., Jambrecina, A., et al. (2008). Pharmacokinetic and pharmacodynamic properties of oral L-citrulline and L-arginine: impact on nitric oxide metabolism. British Journal of Clinical Pharmacology, 65 (1), 51–59. https://doi.org/10.1111/j.1365-2125.2007.02990.x
Shi, R., Zhang, J., Fang, B., Tian, X., Feng, Y., Cheng, Z., et al. (2020). Runners’ metabolomic changes following marathon. Nutrition & Metabolism, 17 (1), 19. doi: 10.1186/s12986-020-00436-0
Sogaard, D., Lund, M. T., Scheuer, C. M., Dehlbaek, M. S., Dideriksen, S. G., Abildskov, C. V., et al. (2018). High-intensity interval training improves insulin sensitivity in older individuals. Acta Physiologica, 222 (4), e13009. https://doi.org/10.1111/apha.13009
Takeda, K., Machida, M., Kohara, A., Omi, N., & Takemasa, T. (2011). Effects of citrulline supplementation on fatigue and exercise performance in mice. Journal of Nutritional Science and Vitaminology, 57 (3), 246–250. https://doi.org/10.3177/jnsv.57.246
Teymoori, F., Asghari, G., Salehi, P., Sadeghian, S., Mirmiran, P., & Azizi, F. (2019). Are dietary amino acids prospectively predicts changes in serum lipid profile? Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 13 (3), 1837–1843. https://doi.org/10.1016/j.dsx.2019.04.013
Tzimou, A., Nikolaidis, S., Begou, O., Siopi, A., Deda, O., Taitzoglou, I., et al. (2020). Effects of aging, long-term and lifelong exercise on the urinary metabolic footprint of rats. Metabolites, 10 (12).
Viltard, M., Durand, S., Pérez-Lanzón, M., Aprahamian, F., Lefevre, D., Leroy, C., et al. (2019). The metabolomic signature of extreme longevity: naked mole rats versus mice. Aging (Albany NY), 11 (14), 4783–4800.
Walrand, S. (2018). Dietary supplement intake among the elderly: hazards and benefits. Current Opinion in Clinical Nutrition & Metabolic Care, 21 (6), 465–470.
Whyte, L. J., Gill, J. M., & Cathcart, A. J. (2010). Effect of 2 weeks of sprint interval training on health-related outcomes in sedentary overweight/obese men. Metabolism, 59 (10), 1421–1428. https://doi.org/10.1016/j.metabol.2010.01.002
Youssef, L., Bourgin, M., Durand, S., Aprahamian, F., Lefevre, D., Maiuri, M. C., et al. (2023). Serum Metabolome Adaptations Following 12 Weeks of High-Intensity Interval Training or Moderate-Intensity Continuous Training in Obese Older Adults. Metabolites, 13 (2), 198.
Youssef, L., Granet, J., Marcangeli, V., Dulac, M., Hajj-Boutros, G., Reynaud, O., et al. (2022). Clinical and biological adaptations in obese older adults following 12-weeks of high-intensity interval training or moderate-intensity continuous training. Healthcare (Basel), 10 (7).