[en] Our aim was to assess structural and functional networks in schizophrenia patients; and the possible prediction of the latter based on the former. The possible dependence of functional network properties on structural alterations has not been analyzed in schizophrenia. We applied averaged path-length (PL), clustering coefficient, and density (D) measurements to data from diffusion magnetic resonance and electroencephalography in 39 schizophrenia patients and 79 controls. Functional data were collected for the global and theta frequency bands during an odd-ball task, prior to stimulus delivery and at the corresponding processing window. Connectivity matrices were constructed from tractography and registered cortical segmentations (structural) and phase-locking values (functional). Both groups showed a significant electroencephalographic task-related modulation (change between prestimulus and response windows) in the global and theta bands. Patients showed larger structural PL and prestimulus density in the global and theta bands, and lower PL task-related modulation in the theta band. Structural network values predicted prestimulus global band values in controls and global band task-related modulation in patients. Abnormal functional values found in patients (prestimulus density in the global and theta bands and task-related modulation in the theta band) were not predicted by structural data in this group. Structural and functional network abnormalities respectively predicted cognitive performance and positive symptoms in patients. Taken together, the alterations in the structural and functional theta networks in the patients and the lack of significant relations between these alterations, suggest that these types of network abnormalities exist in different groups of schizophrenia patients.
Disciplines :
Neurology
Author, co-author :
Gomez-Pilar, Javier; Biomedical Engineering Group, University of Valladolid, Paseo de Belén, 15, 47011 Valladolid, Spain
de Luis-García, Rodrigo; Imaging Processing Laboratory, University of Valladolid, Paseo de Belén, 15, 47011 Valladolid, Spain
Lubeiro, Alba; Psychiatry Department, School of Medicine, University of Valladolid, Av. Ramón y Cajal, 7, Valladolid, 47005, Spain
de la Red, Henar; Psychiatry Service, Clinical Hospital of Valladolid, Ramón y Cajal, 3, Valladolid, 47003, Spain
Poza, Jesús; Biomedical Engineering Group, University of Valladolid, Paseo de Belén, 15, 47011 Valladolid, Spain ; Psychiatry Service, Clinical Hospital of Valladolid, Ramón y Cajal, 3, Valladolid, 47003, Spain ; Neurosciences Institute of Castilla y León (INCYL), Pintor Fernando Gallego, 1, 37007 University of Salamanca, 37007, Salamanca, Spain ; IMUVA, Mathematics Research Institute, University of Valladolid, Valladolid, Spain
Nunez Novo, Pablo ; University of Valladolid > Biomedical Engineering Group
Hornero, Roberto; Biomedical Engineering Group, University of Valladolid, Paseo de Belén, 15, 47011 Valladolid, Spain ; Neurosciences Institute of Castilla y León (INCYL), Pintor Fernando Gallego, 1, 37007 University of Salamanca, 37007, Salamanca, Spain ; IMUVA, Mathematics Research Institute, University of Valladolid, Valladolid, Spain
Molina, Vicente ; Psychiatry Department, School of Medicine, University of Valladolid, Av. Ramón y Cajal, 7, Valladolid, 47005, Spain ; Psychiatry Service, Clinical Hospital of Valladolid, Ramón y Cajal, 3, Valladolid, 47003, Spain ; Neurosciences Institute of Castilla y León (INCYL), Pintor Fernando Gallego, 1, 37007 University of Salamanca, 37007, Salamanca, Spain
Language :
English
Title :
Relations between structural and EEG-based graph metrics in healthy controls and schizophrenia patients.
ISCIII - Instituto de Salud Carlos III MINECO - Gobierno de Espana. Ministerio de Economia y Competitividad FEDER - Fonds Européen de Développement Régional EC - European Commission JCYL - Junta de Castilla y León
Funding text :
Instituto de Salud Carlos III, Grant/Award Number: PI15/00299; “Gerencia Regional de Salud de Castilla y León”, Grant/Award Number: GRS 1263/A/16 and GRS 1485/ A/17; “Ministerio de Economía y Competitividad” and FEDER. Grant/Award Number: TEC2014-53196-R and TEC2013-44194-P; “European Commission” and FEDER under project “Análisis y correlación entre el genoma completo y la actividad cerebral para la ayuda en el diagnóstico de la enfermedad de Alzheimer” (“Cooperation Program Interreg V-A Spain-Portugal POC-TEP 2014-2020”), and by “Consejería de Educación de la Junta de Castilla y León” and FEDER Grant/Award Number: VA037U16; University of Valladolid and Consejería de Educación de la Junta de Castilla y León
Adachi, Y., Osada, T., Sporns, O., Watanabe, T., Matsui, T., Miyamoto, K., & Miyashita, Y. (2012). Functional connectivity between anatomically unconnected areas is shaped by collective network-level effects in the macaque cortex. Cerebral Cortex, 22(7), 1586–1592
Bachiller, A., Diez, A., Suazo, V., Dominguez, C., Ayuso, M., Hornero, R., … Molina, V. (2014). Decreased spectral entropy modulation in patients with schizophrenia during a P300 task. European Archives of Psychiatry and Clinical Neuroscience, 264(6), 533–543
Bachiller, A., Poza, J., Gomez, C., Molina, V., Suazo, V., & Hornero, R. (2015a). A comparative study of event-related coupling patterns during an auditory oddball task in schizophrenia. Journal of Neural Engineering, 12, 016007
Bachiller, A., Romero, S., Molina, V., Alonso, J. F., Mananas, M. A., Poza, J., & Hornero, R. (2015b). Auditory P3a and P3b neural generators in schizophrenia: An adaptive sLORETA P300 localization approach. Schizophrenia Research, 169, 318–325
Bastos, A. M., & Schoffelen, J. M. (2016). A tutorial review of functional connectivity analysis methods and their interpretational pitfalls. Frontiers in Systems Neuroscience, 9, 175
Bledowski, C., Prvulovic, D., Hoechstetter, K., Scherg, M., Wibral, M., Goebel, R., & Linden, D. E. (2004). Localizing P300 generators in visual target and distractor processing: A combined event-related potential and functional magnetic resonance imaging study. Journal of Neuroscience, 24(42), 9353–9360
Bob, P., Palus, M., Susta, M., & Glaslova, K. (2008). EEG phase synchronization in patients with paranoid schizophrenia. Neurosciecne Letters, 447(1), 73–77
Bohlken, M. M., Brouwer, R. M., Mandl, R. C., Van den Heuvel, M. P., Hedman, A. M., De Hert, M., … Hulshoff Pol, H. E. (2016). Structural Brain Connectivity as a Genetic Marker for Schizophrenia. JAMA Psychiatry, 73(1), 11–19
Bressler, S. L., Coppola, R., & Nakamura, R. (1993). Episodic multiregional cortical coherence at multiple frequencies during visual task performance. Nature, 366(6451), 153–156
Brunner, C., Billinger, M., Seeber, M., Mullen, T. R., & Makeig, S. (2016). Volume conduction influences scalp-based connectivity estimates. Frontiers in Computational Neuroscience, 10, 121
Bullmore, E., & Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10(3), 186–198
Collin, G., Scholtens, L. H., Kahn, R. S., Hillegers, M. H. J., & van den Heuvel, M. P. (2017). Affected anatomical rich club and structural-functional coupling in young offspring of schizophrenia and bipolar disorder patients. Biological Psychiatry, 82(10), 746–755
Dehaene, S., & Changeux, J. P. (2011). Experimental and theoretical approaches to conscious processing. Neuron, 70(2), 200–227
Desikan, R. S., Segonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., … Killiany, R. J. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage, 31(3), 968–980
Dhollaner, T., & Connelly, A. (2016). Unsupervised 3-tissue response function estimation from single-shell or multi-shell diffusion mr data without a co-registered t1 image. In ISMRM Workshop on Breaking the Barriers of Diffusion MRI. (vol. 5)
Di Biase, M. A., Cropley, V. L., Baune, B. T., Olver, J., Amminger, G. P., Phassouliotis, C., … Zalesky, A. (2017). White matter connectivity disruptions in early and chronic schizophrenia. Psychological Medicine, 47(16), 2797–2810
Doege, K., Bates, A. T., White, T. P., Das, D., Boks, M. P., & Liddle, P. F. (2009). Reduced event-related low frequency EEG activity in schizophrenia during an auditory oddball task. Psychophysiology, 46(3), 566–577
Ellison-Wright, I., & Bullmore, E. (2009). Meta-analysis of diffusion tensor imaging studies in schizophrenia. Schizophrenia Research, 108(1–3), 3–10
Fischl, B., van der, K., A., Destrieux, C., Halgren, E., Segonne, F., Salat, D. H., … Dale, A. M. (2004). Automatically parcellating the human cerebral cortex. Cerebral Cortex, 14, 11–22
Gomez-Pilar, J., Lubeiro, A., Poza, J., Hornero, R., Ayuso, M., Valcarcel, C., … Molina, V. (2017). Functional EEG network analysis in schizophrenia: Evidence of larger segregation and deficit of modulation. Progress in Neuropsychopharmacology and Biological Psychiatry, 76, 116–123
Gomez-Pilar, J., Poza, J., Bachiller, A., Gomez, C., Nuñez, P., Lubeiro, A., … Hornero, R. (2018). Quantification of graph complexity based on the edge weight distribution balance: Application to brain networks. International Journal of Neural Systems, 28(01), 1750032
Gonzalez-Burgos, G., Fish, K. N., & Lewis, D. A. (2011). GABA neuron alterations, cortical circuit dysfunction and cognitive deficits in schizophrenia. Neural Plastics, 2011, 1
Griffa, A., Baumann, P. S., Ferrari, C., Do, K. Q., Conus, P., Thiran, J. P., & Hagmann, P. (2015). Characterizing the connectome in schizophrenia with diffusion spectrum imaging. Human Brain Mapping, 36(1), 354–366
Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C. J., Wedeen, V. J., & Sporns, O. (2008). Mapping the structural core of human cerebral cortex. PLoS Biology, 6(7), e159
Honey, C. J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J. P., Meuli, R., & Hagmann, P. (2009). Predicting human resting-state functional connectivity from structural connectivity. Proceedings of the National Academy of Sciences of the United States of /America, 106(6), 2035–2040
Honey, C. J., Thivierge, J. P., & Sporns, O. (2010). Can structure predict function in the human brain?. Neuroimage, 52(3), 766–776
Jhung, K., Cho, S. H., Jang, J. H., Park, J. Y., Shin, D., Kim, K. R., … An, S. K. (2013). Small-world networks in individuals at ultra-high risk for psychosis and first-episode schizophrenia during a working memory task. Neuroscience Letters, 535, 35–39
Jones, J. T., DiFrancesco, M., Zaal, A. I., Klein-Gitelman, M. S., Gitelman, D., Ying, J., & Brunner, H. I. (2015). Childhood-onset lupus with clinical neurocognitive dysfunction shows lower streamline density and pairwise connectivity on diffusion tensor imaging. Lupus, 24(10), 1081–1086
Kambeitz, J., Kambeitz-Ilankovic, L., Cabral, C., Dwyer, D. B., Calhoun, V. D., van den Heuvel, M. P., … Malchow, B. (2016). Aberrant functional whole-brain network architecture in patients with schizophrenia: A meta-analysis. Schizophrenia Bulletin, 42(Suppl 1), S13–S21
Kay, S. R., Fiszbein, A., & Opler, L. A. (1987). The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophrenia Bulletin, 13(2), 261–276
Lachaux, J. P., Rodriguez, E., Martinerie, J., & Varela, F. J. (1999). Measuring phase synchrony in brain signals. Human Brain Mapping, 8(4), 194–208
Linden, D. E., Prvulovic, D., Formisano, E., Vollinger, M., Zanella, F. E., Goebel, R., & Dierks, T. (1999). The functional neuroanatomy of target detection: An fMRI study of visual and auditory oddball tasks. Cerebral Cortex, 9(8), 815–823
Lo, C. Y., Su, T. W., Huang, C. C., Hung, C. C., Chen, W. L., Lan, T. H., … Bullmore, E. T. (2015). Randomization and resilience of brain functional networks as systems-level endophenotypes of schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 112(29), 9123–9128
Lubeiro, A., Rueda, C., Hernandez, J. A., Sanz, J., Sarramea, F., & Molina, V. (2016). Identification of two clusters within schizophrenia with different structural, functional and clinical characteristics. Progress in Neuropsychopharmacology & Biological Psychiatry, 64, 79–86
Ma, S., Calhoun, V. D., Eichele, T., Du, W., & Adalı, T. (2012). Modulations of functional connectivity in the healthy and schizophrenia groups during task and rest. Neuroimage, 62(3), 1694–1704
Martin-Santiago, O., Gomez-Pilar, J., Lubeiro, A., Ayuso, M., Poza, J., Hornero, R., … Molina, V. (2016). Modulation of brain network parameters associated with subclinical psychotic symptoms. Progress Neuropsychopharmacology & Biological Psychiatry, 66, 54–62
Micheloyannis, S., Pachou, E., Stam, C. J., Breakspear, M., Bitsios, P., Vourkas, M., … Zervakis, M. (2006). Small-world networks and disturbed functional connectivity in schizophrenia. Schizophrenia Research, 87(1–3), 60–66
Molina, V., Lubeiro, A., Soto, O., Rodriguez, M., Álvarez, A., Hernández, R., & de Luis-García, R. (2017). Alterations in prefrontal connectivity in schizophrenia assessed using diffusion magnetic resonance imaging. Progress in Neuropsychopharmacology & Biology Psychiatry, 76, 107–115
Nunez, P., Poza, J., Bachiller, A., Gomez-Pilar, J., Lubeiro, A., Molina, V., & Hornero, R. (2017). Exploring non-stationarity patterns in schizophrenia: Neural reorganization abnormalities in the alpha band. Journal of Neural Engineering, 14(4), 046001
Patel, S., Mahon, K., Wellington, R., Zhang, J., Chaplin, W., & Szeszko, P. R. (2011). A meta-analysis of diffusion tensor imaging studies of the corpus callosum in schizophrenia. Schizophrenia Research, 129(2–3), 149–155
Patenaude, B., Smith, S. M., Kennedy, D. N., & Jenkinson, M. (2011). A Bayesian model of shape and appearance for subcortical brain segmentation. Neuroimage, 56(3), 907–922
Rubinov, M., Knock, S. A., Stam, C. J., Micheloyannis, S., Harris, A. W., Williams, L. M., & Breakspear, M. (2009). Small-world properties of nonlinear brain activity in schizophrenia. Human Brain Mapping, 30(2), 403–416
Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: Uses and interpretations. Neuroimage, 52(3), 1059–1069
Salvador, R., Pena, A., Menon, D. K., Carpenter, T. A., Pickard, J. D., & Bullmore, E. T. (2005). Formal characterization and extension of the linearized diffusion tensor model. Human Brain Mapping, 24(2), 144–155
Schoffelen, J. M., & Gross, J. (2009). Source connectivity analysis with MEG and EEG. Human Brain Mapping, 30(6), 1857–1865
Segarra, N., Bernardo, M., Gutierrez, F., Justicia, A., Fernadez-Egea, E., Allas, M., … Keefe, R. S. (2011). Spanish validation of the Brief Assessment in Cognition in Schizophrenia (BACS) in patients with schizophrenia and healthy controls. European Psychiatry, 26(2), 69–73
Shim, M., Kim, D. W., Lee, S. H., & Im, C. H. (2014). Disruptions in small-world cortical functional connectivity network during an auditory oddball paradigm task in patients with schizophrenia. Schizophrenia Research, 156(2–3), 197–203
Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17(3), 143–155
Spencer, K. M., Nestor, P. G., Niznikiewicz, M. A., Salisbury, D. F., Shenton, M. E., & McCarley, R. W. (2003). Abnormal neural synchrony in schizophrenia. Journal of Neuroscience, 23, 7407–7411
Stam, C. J., de Haan, W., Daffertshofer, A., Jones, B. F., Manshanden, I., van Cappellen van Walsum, A. M., … Scheltens, P. (2009). Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer's disease. Brain, 132(1), 213–224
Sui, J., Yu, Q., He, H., Pearlson, G. D., & Calhoun, V. D. (2012). A selective review of multimodal fusion methods in schizophrenia. Frontiers in Human Neuroscience, 6, 27
Sun, H., Lui, S., Yao, L., Deng, W., Xiao, Y., Zhang, W., … Gong, Q. (2015). Two patterns of white matter abnormalities in medication-naive patients with first-episode schizophrenia revealed by diffusion tensor imaging and cluster analysis. JAMA Psychiatry, 72(7), 678–686
Thakkar, K. N., Rosler, L., Wijnen, J. P., Boer, V. O., Klomp, D. W., Cahn, W., … Neggers, S. F. (2017). 7T Proton magnetic resonance spectroscopy of gamma-aminobutyric acid, glutamate, and glutamine reveals altered concentrations in patients with schizophrenia and healthy siblings. Biological Psychiatry, 81(6), 525–535
Tournier, J. D., Calamante, F., & Connelly, A. (2007). Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution. Neuroimage, 35(4), 1459–1472
Van de Steen, F., Faes, L., Karahan, E., Songsiri, J., Valdes-Sosa, P. A., & Marinazzo, D. (2016). Critical comments on EEG sensor space dynamical connectivity analysis. Brain Topography, [Epub ahead of print]
van den Heuvel, M. P., Mandl, R. C., Stam, C. J., Kahn, R. S., & Hulshoff Pol, H. E. (2010). Aberrant frontal and temporal complex network structure in schizophrenia: A graph theoretical analysis. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 30(47), 15915–15926
van den Heuvel, M. P., Sporns, O., Collin, G., Scheewe, T., Mandl, R. C., Cahn, W., … Kahn, R. S. (2013). Abnormal rich club organization and functional brain dynamics in schizophrenia. JAMA Psychiatry, 70(8), 783–792
van Diessen, E., Numan, T., van Dellen, E., van der Kooi, A. W., Boersma, M., Hofman, D., … Stam, C. J. (2015). Opportunities and methodological challenges in EEG and MEG resting state functional brain network research. Clinical Neurophysiology, 126(8), 1468–1481
Varela, F., Lachaux, J. P., Rodriguez, E., & Martinerie, J. (2001). The brainweb: Phase synchronization and large-scale integration. Nature Reviews Neuroscience, 2(4), 229–239
von Stein, A., Chiang, C., & Konig, P. (2000). Top-down processing mediated by interareal synchronization. Proceedings of the National Academy of Sciences of the United States of America, 97(26), 14748–14753
Wheeler, A. L., Wessa, M., Szeszko, P. R., Foussias, G., Chakravarty, M. M., Lerch, J. P., … Voineskos, A. N. (2015). Further neuroimaging evidence for the deficit subtype of schizophrenia. A cortical connectomics analysis. JAMA Psychiatry, 72(5), 446–455
Yu, Q., Sui, J., Rachakonda, S., He, H., Gruner, W., Pearlson, G., … Calhoun, V. D. (2011). Altered topological properties of functional network connectivity in schizophrenia during resting state: A small-world brain network study. PLoS One, 6(9), e25423
Zhang, Y., Brady, M., & Smith, S. (2001). Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Transactions on Medical Imaging, 20(1), 45–57