Article (Scientific journals)
All-quantum dot based Förster resonant energy transfer: key parameters for high-efficiency biosensing.
Hottechamps, Julie; Noblet, Thomas; Méthivier, Christophe et al.
2023In Nanoscale, 15 (6), p. 2614 - 2623
Peer Reviewed verified by ORBi
 

Files


Full Text
1_Article.pdf
Author postprint (3.11 MB)
Request a copy
Annexes
2_SupInfo.pdf
(4.83 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
cadmium telluride; Cadmium Compounds; Tellurium; Fluorescence Resonance Energy Transfer; Quantum Dots; Biosensing Techniques; Biosensing; Colloidal quantum dots; Donor and acceptor; Higher efficiency; Keys parameters; Organic dye; Quantum dot absorption; Resonant energy transfer; UV-visible; Visible range; Materials Science (all); General Materials Science
Abstract :
[en] While colloidal quantum dots (QDs) are commonly used as fluorescent donors within biosensors based on Förster resonant energy transfer (FRET), they are hesitantly employed as acceptors. On the sole basis of Förster theory and the well-known behaviour of organic dyes, it is often argued that the QD absorption band over the UV-visible range is too wide. Discarding these preconceptions inherited from classical fluorophores, we experimentally examine the FRET process occurring between donor and acceptor CdTe QDs and provide a mathematical description of it. We evidence that the specific features of QDs unexpectedly lead to the enhancement of acceptors' emission (up to +400%), and are thus suitable for the design of highly efficient all-QD based FRET sensors. Our model enables us to identify the critical parameters maximizing the contrast between positive and negative biosensing readouts: the concentrations of donors and acceptors, their spectral overlap, the densities of their excitonic states, their dissipative coupling with the medium and the statistics of QD-QD chemical pairing emerge as subtle and determinant parameters. We relate them quantitatively to the measured QD-QD FRET efficiency and discuss how they must be optimized for biosensing applications.
Disciplines :
Physics
Author, co-author :
Hottechamps, Julie  ;  Université de Liège - ULiège > Complex and Entangled Systems from Atoms to Materials (CESAM)
Noblet, Thomas  ;  Université de Liège - ULiège > Département de physique > Biophotonique
Méthivier, Christophe;  Sorbonne Universités, UPMC Univ. Paris 6, UMR CNRS 7197 Laboratoire de Réactivité de Surface, F75005 Paris, France
Boujday, Souhir;  Sorbonne Universités, UPMC Univ. Paris 6, UMR CNRS 7197 Laboratoire de Réactivité de Surface, F75005 Paris, France
Dreesen, Laurent ;  Université de Liège - ULiège > Département de physique > Biophotonique
Language :
English
Title :
All-quantum dot based Förster resonant energy transfer: key parameters for high-efficiency biosensing.
Publication date :
09 February 2023
Journal title :
Nanoscale
ISSN :
2040-3364
eISSN :
2040-3372
Publisher :
Royal Society of Chemistry (RSC), England
Volume :
15
Issue :
6
Pages :
2614 - 2623
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
SPW - Service Public de Wallonie
Funding text :
This work was supported by the Service Public de Wallonie (Win2Wal 2018 Program, QD3Drops Project). We also thank the company ZenTech (Liège Science Park, Angleur, Belgium) for the financial support.
Available on ORBi :
since 17 May 2023

Statistics


Number of views
105 (9 by ULiège)
Number of downloads
78 (2 by ULiège)

Scopus citations®
 
10
Scopus citations®
without self-citations
10
OpenCitations
 
0
OpenAlex citations
 
12

Bibliography


Similar publications



Contact ORBi