[en] While colloidal quantum dots (QDs) are commonly used as fluorescent donors within biosensors based on Förster resonant energy transfer (FRET), they are hesitantly employed as acceptors. On the sole basis of Förster theory and the well-known behaviour of organic dyes, it is often argued that the QD absorption band over the UV-visible range is too wide. Discarding these preconceptions inherited from classical fluorophores, we experimentally examine the FRET process occurring between donor and acceptor CdTe QDs and provide a mathematical description of it. We evidence that the specific features of QDs unexpectedly lead to the enhancement of acceptors' emission (up to +400%), and are thus suitable for the design of highly efficient all-QD based FRET sensors. Our model enables us to identify the critical parameters maximizing the contrast between positive and negative biosensing readouts: the concentrations of donors and acceptors, their spectral overlap, the densities of their excitonic states, their dissipative coupling with the medium and the statistics of QD-QD chemical pairing emerge as subtle and determinant parameters. We relate them quantitatively to the measured QD-QD FRET efficiency and discuss how they must be optimized for biosensing applications.
Disciplines :
Physics
Author, co-author :
Hottechamps, Julie ; Université de Liège - ULiège > Complex and Entangled Systems from Atoms to Materials (CESAM)
Noblet, Thomas ; Université de Liège - ULiège > Département de physique > Biophotonique
Méthivier, Christophe; Sorbonne Universités, UPMC Univ. Paris 6, UMR CNRS 7197 Laboratoire de Réactivité de Surface, F75005 Paris, France
Boujday, Souhir; Sorbonne Universités, UPMC Univ. Paris 6, UMR CNRS 7197 Laboratoire de Réactivité de Surface, F75005 Paris, France
Dreesen, Laurent ; Université de Liège - ULiège > Département de physique > Biophotonique
Language :
English
Title :
All-quantum dot based Förster resonant energy transfer: key parameters for high-efficiency biosensing.
This work was supported by the Service Public de Wallonie (Win2Wal 2018 Program, QD3Drops Project). We also thank the company ZenTech (Liège Science Park, Angleur, Belgium) for the financial support.
Medintz I. L. Uyeda H. T. Goldman E. R. Mattoussi H. Nat. Mater. 2005 4 435 446 10.1038/nmat1390 15928695
Medintz I. L. Mattoussi H. Phys. Chem. Chem. Phys. 2009 11 17 45 10.1039/B813919A 19081907
Sapsford K. E. Pons T. Medintz I. L. Mattoussi H. Sensors 2006 6 925 953 10.3390/s6080925
Zhang Y. Clapp A. Sensors 2011 11 11036 11055 10.3390/s111211036 22247651
Cardoso Dos Santos M. Colin I. Ribeiro Dos Santos G. Sumusu K. Demarque M. Medintz I. L. Hildebrandt N. Adv. Mater. 2020 32 1003912
Hildebrandt N. Spillmann C. M. Algar W. R. Pons T. Stewart M. H. Oh E. Sumusu K. Díaz S. A. Delehanty J. B. Medintz I. L. Chem. Rev. 2017 117 536 711 10.1021/acs.chemrev.6b00030 27359326
Zhu J. Zhao Z. J. Li J. J. Zhao J. W. J. Lumin. 2017 192 47 55 10.1016/j.jlumin.2017.06.015
Yuan Y. Zhang J. Liang G. Yang X. Analyst 2012 137 1775 10.1039/C2AN16166D 22407238
Liu T. C. Zhang H. L. Wang J. H. Wang H. Q. Zhang Z. H. Hua X. F. Cao Y. C. Luo Q. M. Zhao Y. D. Anal. Bioanal. Chem. 2008 391 2819 2824 10.1007/s00216-008-2189-3 18537029
Mayilo S. Hilhorst J. Susha A. S. Hohl C. Franzi T. Klar T. A. Rogach A. L. Feldmann J. J. Phys. Chem. C 2008 112 14589 14594 10.1021/jp803503g
Wang S. Mamedova N. Kotov N. A. Chen W. Studer J. Nano Lett. 2002 2 817 822 10.1021/nl0255193
Chen C. Y. Cheng C. T. Lai C. W. Wu P. W. Wu K. C. Chou P. T. Chou Y. H. Chiu H. T. Chem. Commun. 2006 3 263 265 10.1039/B512677K 16391728
Shiraki T. Tsuchiya Y. Shinkai S. Chem. Lett. 2010 39 156 158 10.1246/cl.2010.156
Li Y. Ma Q. Wang X. Su X. Luminescence 2007 22 60 66 10.1002/bio.927 17089351
Chou K. F. Dennis A. M. Sensors 2015 15 13288 13325 10.3390/s150613288 26057041
Snee P. T. Trends Anal. Chem. 2020 123 115750 10.1016/j.trac.2019.115750
Santos M. C. D. Algar W. R. Medintz I. L. Hildebrandt N. Trends Anal. Chem. 2020 125 115819 10.1016/j.trac.2020.115819
Resch-Genger U. Grabolle M. Cavaliere-Jaricot S. Nitschke R. Nann T. Nat. Methods 2008 5 763 775 10.1038/nmeth.1248 18756197
Goldman E. R. Medintz I. L. Whitley J. L. Hayhurst A. Clapp A. R. Uyeda H. T. Deschamps J. R. Lassman M. E. Mattoussi H. J. Am. Chem. Soc. 2005 127 6744 6751 10.1021/ja043677l 15869297
Sarkar S. Bose R. Jana S. Jana N. R. Pradhan N. J. Phys. Chem. Lett. 2010 1 636 640 10.1021/jz9004015
Claussen J. C. Algar W. R. Hildebrandt N. Susumu K. Ancona M. G. Medintz I. L. Nanoscale 2013 5 12156 12170 10.1039/C3NR03655C 24056977
Vinayaka A. C. Thakur M. S. Luminescence 2013 28 827 835 10.1002/bio.2440 23192990
Devatha G. Roy S. Rao A. Mallick A. Basu S. Pillai P. P. Chem. Sci. 2017 8 3879 3884 10.1039/C7SC00592J 28626557
Díaz S. Aragonés G. L. Buckhout-White S. Qiu X. Oh E. Susumu K. Melinger J. S. Huston A. L. Hildebrandt N. Medintz I. L. J. Phys. Chem. Lett. 2017 8 2182 2188 10.1021/acs.jpclett.7b00584 28467088
Saha S. Majhi D. Bhattacharyya K. Preeyanka N. Datta A. Sarkar M. Phys. Chem. Chem. Phys. 2018 20 9523 9535 10.1039/C7CP07233C 29570192
Qiu X. Guo J. Xu J. Hildebrandt N. J. Phys. Chem. Lett. 2018 9 4379 4384 10.1021/acs.jpclett.8b01944 30016106
Hottechamps J. Noblet T. Brans A. Humbert C. Dreesen L. ChemPhysChem 2020 21 853 862 10.1002/cphc.202000067 32084295
Devatha G. Rao A. Roy S. Pillai P. P. ACS Energy Lett. 2019 4 1710 1716 10.1021/acsenergylett.9b00832
Devatha G. Roy P. Rao A. Roy S. Pillai P. P. J. Phys. Chem. Lett. 2020 11 4099 4106 10.1021/acs.jpclett.0c01121 32357301
Sarkar S. Maity A. R. Karan N. S. Pradhan N. J. Phys. Chem. C 2013 117 21988 21994 10.1021/jp4035612
Wang B. B. Wang Q. Jin Y. G. Ma M. H. Cai Z. X. J. Photochem. Photobiol., A 2015 299 131 137 10.1016/j.jphotochem.2014.10.020
Roy P. Devatha G. Roy S. Rao A. Pillai P. P. J. Phys. Chem. Lett. 2020 11 5354 5360 10.1021/acs.jpclett.0c01360 32539403
Qiu X. Xu J. Santos M. C. D. Hildebrandt N. Acc. Chem. Res. 2022 55 551 564 10.1021/acs.accounts.1c00691 35084817
Samanta A. Medintz I. L. Sensors 2020 20 2909 10.3390/s20102909 32455561
Förster T. Ann. Phys. 1948 437 55 75 10.1002/andp.19484370105
Lakowicz J. R., Principles of Fluorescence Spectroscopy, Springer, Baltimore, 3rd edn, 2006
Geißler D. Charbonnière L. J. Ziessel R. F. Butlin N. G. Löhmannsröben H.-G. Hildebrandt N. Angew. Chem., Int. Ed. 2010 49 1396 1401 10.1002/anie.200906399 20108296
Kagan C. R. Murray C. B. Nirmal M. Bawendi M. G. Phys. Rev. Lett. 1996 76 1517 1520 10.1103/PhysRevLett.76.1517 10061743
Noblet T. Dreesen L. Hottechamps J. Humbert C. Phys. Chem. Chem. Phys. 2017 19 26559 26565 10.1039/C7CP03484A 28930309
Hottechamps J. Noblet T. Erard M. Dreesen L. J. Colloid Interface Sci. 2021 594 245 253 10.1016/j.jcis.2021.02.116 33765644
Noblet T. Hottechamps J. Erard M. Dreesen L. J. Phys. Chem. C 2022 126 15309 15318 10.1021/acs.jpcc.2c04177
Zheng K. Zidek K. Abdellah M. Zhu N. Chábera P. Lenngren N. Chi Q. Pullerits T. J. Am. Chem. Soc. 2014 136 6259 6268 10.1021/ja411127w 24684141
Achermann M. Jeong S. Balet L. Montano G. A. Hollingsworth J. ACS Nano 2011 5 1761 1768 10.1021/nn102365v 21314178
Noh M. Kim T. Lee H. Kim C. K. Joo S. W. Lee K. Colloids Surf., A 2010 359 39 44 10.1016/j.colsurfa.2010.01.059
Wolf A. Lesnyak V. Gaponik N. Eychmüller A. J. Phys. Chem. Lett. 2012 3 2188 2193 10.1021/jz300726n 26295769