[en] Objective.Schizophrenia is a psychiatric disorder that has been shown to disturb the dynamic top-down processing of sensory information. Various imaging techniques have revealed abnormalities in brain activity associated with this disorder, both locally and between cerebral regions. However, there is increasing interest in investigating dynamic network response to novel and relevant events at the network level during an attention-demanding task with high-temporal-resolution techniques. The aim of the work was: (i) to test the capacity of a novel algorithm to detect recurrent brain meta-states from auditory oddball task recordings; and (ii) to evaluate how the dynamic activation and behavior of the aforementioned meta-states were altered in schizophrenia, since it has been shown to impair top-down processing of sensory information.Approach.A novel unsupervised method for the detection of brain meta-states based on recurrence plots and community detection algorithms, previously tested on resting-state data, was used on auditory oddball task recordings. Brain meta-states and several properties related to their activation during target trials in the task were extracted from electroencephalography data from patients with schizophrenia and cognitively healthy controls.Main results.The methodology successfully detected meta-states during an auditory oddball task, and they appeared to show both frequency-dependent time-locked and non-time-locked activity with respect to the stimulus onset. Moreover, patients with schizophrenia displayed higher network diversity, and showed more sluggish meta-state transitions, reflected in increased dwell times, less complex meta-state sequences, decreased meta-state space speed, and abnormal ratio of negative meta-state correlations.Significance.Abnormal cognition in schizophrenia is also reflected in decreased brain flexibility at the dynamic network level, which may hamper top-down processing, possibly indicating impaired decision-making linked to dysfunctional predictive coding. Moreover, the results showed the ability of the methodology to find meaningful and task-relevant changes in dynamic connectivity and pathology-related group differences.
Disciplines :
Neurology
Author, co-author :
Nunez Novo, Pablo ; Biomedical Engineering Group, Universidad de Valladolid, Valladolid, Spain
Gómez, Carlos ; Biomedical Engineering Group, Universidad de Valladolid, Valladolid, Spain ; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), Madrid, Spain
Rodríguez-González, Víctor ; Biomedical Engineering Group, Universidad de Valladolid, Valladolid, Spain
Hillebrand, Arjan ; Department of Clinical Neurophysiology and MEG Center, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
Tewarie, Prejaas ; Department of Clinical Neurophysiology and MEG Center, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
Gomez-Pilar, Javier ; Biomedical Engineering Group, Universidad de Valladolid, Valladolid, Spain ; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), Madrid, Spain
Molina, Vicente ; Department of Psychiatry, School of Medicine, University of Valladolid, Valladolid, Spain ; Psychiatry Service, Clinical Hospital of Valladolid, Valladolid, Spain ; Neurosciences Institute of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain
Hornero, Roberto ; Biomedical Engineering Group, Universidad de Valladolid, Valladolid, Spain ; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), Madrid, Spain ; IMUVA, Instituto de Investigación en Matemáticas, University of Valladolid, Valladolid, Spain
Poza, Jesús ; Biomedical Engineering Group, Universidad de Valladolid, Valladolid, Spain ; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), Madrid, Spain ; IMUVA, Instituto de Investigación en Matemáticas, University of Valladolid, Valladolid, Spain
Language :
English
Title :
Schizophrenia induces abnormal frequency-dependent patterns of dynamic brain network reconfiguration during an auditory oddball task.
ERDF - European Regional Development Fund MICINN - Ministerio de Ciencia e Innovacion EC - European Commission UVA - Universidad de Valladolid
Funding text :
This research was supported by ‘Ministerio de Ciencia e Innovación—Agencia Estatal de Investigación’ and ‘European Regional Development Fund’ (FEDER) and ‘Ministerio de Ciencia, Innovación y Universidades’ under Project PGC2018-098214-A-I00, the ‘European Commission’ and FEDER under project ‘Análisis y correlación entre la epigenética y la actividad cerebral para evaluar el riesgo de migraña crónica y episódica en mujeres’ (‘Cooperation Programme Interreg V-A Spain-Portugal POCTEP 2014–2020’), and by CIBER-BBN (ISCIII) co-funded with FEDER funds. P Núñez was in receipt of a predoctoral scholarship ‘Ayuda para contratos predoctorales para la Formación de Profesorado Universitario (FPU)’ grant from the ‘Ministerio de Educación, Cultura y Deporte’ (FPU17/00850). V Rodríguez-González was in receipt of a PIF-UVa grant from the ‘University of Valladolid’.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Abásolo D Hornero R Gómez C García M López M 2006 Analysis of EEG background activity in Alzheimer's disease patients with Lempel-Ziv complexity and central tendency measure Med. Eng. Phys. 28 315 22 10.1016/j.medengphy.2005.07.004
Alnæs D et al 2019 Brain heterogeneity in schizophrenia and its association with polygenic risk JAMA Psychiatry 76 739 10.1001/jamapsychiatry.2019.0257
American Psychiatric Association 2013 Diagnostic and Statistical Manual of Mental Disorders 5th edn Arlington, VA American Psychiatric Publishing
Babiloni C et al 2006 Sources of cortical rhythms in adults during physiological aging: a multicentric EEG study Human Brain Mapp. 27 162 72 10.1002/hbm.20175
Babiloni C Lizio R Marzano N Capotosto P Soricelli A Triggiani A I. Cordone S Gesualdo L Del Percio C 2016 Brain neural synchronization and functional coupling in Alzheimer's disease as revealed by resting state EEG rhythms Int. J. Psychophysiol. 103 88 102 10.1016/j.ijpsycho.2015.02.008
Bachiller A et al 2015a Decreased entropy modulation of EEG response to novelty and relevance in schizophrenia during a P300 task Eur. Arch. Psychiatry Clin. Neurosci. 265 525 35 10.1007/s00406-014-0525-5
Bachiller A Díez A Suazo V Domínguez C Ayuso M Hornero R Poza J Molina V 2014 Decreased spectral entropy modulation in patients with schizophrenia during a P300 task Eur. Arch. Psychiatry Clin. Neurosci. 264 533 43 10.1007/s00406-014-0488-6
Bachiller A Romero S Molina V Alonso J F. Mañanas M A. Poza J Hornero R 2015b Auditory P3a and P3b neural generators in schizophrenia: an adaptive sLORETA P300 localization approach Schizophrenia Res. 169 318 25 10.1016/j.schres.2015.09.028
Baker A P. Brookes M J. Rezek I A. Smith S M. Behrens T Probert Smith P J. Woolrich M 2014 Fast transient networks in spontaneous human brain activity eLife 3 1 18 10.7554/eLife.01867
Benjamini Y Hochberg Y 1995 Controlling the false discovery rate: a practical and powerful approach to multiple testing J. R. Stat. Soc. 57 289 300 10.2307/2346101
Bledowski C Prvulovic D Hoechstetter K Scherg M Wibral M Goebel R Linden D E. J. 2004 Localizing P300 generators in visual target and distractor processing: a combined event-related potential and functional magnetic resonance imaging study J. Neurosci. 24 9353 60 10.1523/JNEUROSCI.1897-04.2004
Blondel V D. Guillaume J L. Lambiotte R Lefebvre E 2008 Fast unfolding of communities in large networks J. Stat. Mech.: Theory Exp. 2008 10008 10.1088/1742-5468/2008/10/P10008
Brugger S P. Howes O D. 2017 Heterogeneity and homogeneity of regional brain structure in schizophrenia: a meta-analysis JAMA Psychiatry 74 1104 11 10.1001/jamapsychiatry.2017.2663
Cabral J Vidaurre D Marques P Magalhães R Silva Moreira P Miguel Soares J Deco G Sousa N Kringelbach M L. 2017 Cognitive performance in healthy older adults relates to spontaneous switching between states of functional connectivity during rest Sci. Rep. 7 5135 10.1038/s41598-017-05425-7
Calhoun V D. Miller R Pearlson G Adall T 2014 The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery Neuron 84 262 74 10.1016/j.neuron.2014.10.015
Cea-Cañas B Gomez-Pilar J Núñez P Rodríguez-Vázquez E de Uribe N Díez A Pérez-Escudero A Molina V 2020 Connectivity strength of the EEG functional network in schizophrenia and bipolar disorder Prog. Neuro-Psychopharmacol. Biol. Psychiatry 98 109801 10.1016/j.pnpbp.2019.109801
Cui F Ma N Luo Y 2016 Moral judgment modulates neural responses to the perception of other's pain: an ERP study Sci. Rep. 6 20851 10.1038/srep20851
Damaraju E et al 2014 Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia NeuroImage: Clin. 5 298 308 10.1016/j.nicl.2014.07.003
Debener S Kranczioch C Herrmann C S. Engel A K. 2002 Auditory novelty oddball allows reliable distinction of top-down and bottom-up processes of attention Int. J. Psychophysiol. 46 77 84 10.1016/S0167-8760(02)00072-7
Desikan R S. et al 2006 An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest NeuroImage 31 968 80 10.1016/j.neuroimage.2006.01.021
Douw L Nieboer D Stam C J. Tewarie P Hillebrand A 2018 Consistency of magnetoencephalographic functional connectivity and network reconstruction using a template versus native MRI for co-registration Human Brain Mapp. 39 104 19 10.1002/hbm.23827
Engels M M. van der Flier W M. Stam C J. Hillebrand A Scheltens P van Straaten E C. 2017 Alzheimer's disease: the state of the art in resting-state magnetoencephalography Clin. Neurophysiol. 128 1426 37 10.1016/j.clinph.2017.05.012
Fernández-Linsenbarth I et al 2021 Neurobiological underpinnings of cognitive subtypes in psychoses: a cross-diagnostic cluster analysis Schizophrenia Res. 229 102 11 10.1016/j.schres.2020.11.013
Ford J M. Roach B J. Hoffman R S. Mathalon D H. 2008 The dependence of P300 amplitude on gamma synchrony breaks down in schizophrenia Brain Res. 1235 133 42 10.1016/j.brainres.2008.06.048
Friston K J. 1998 The disconnection hypothesis Schizophrenia Res. 30 115 25 10.1016/S0920-9964(97)00140-0
Fu Z Iraji A Turner J A. Sui J Miller R Pearlson G D. Calhoun V D. 2021 Dynamic state with covarying brain activity-connectivity: on the pathophysiology of schizophrenia NeuroImage 224 117385 10.1016/j.neuroimage.2020.117385
Gan T Lu X Li W Gui D Tang H Mai X Liu C Luo Y J. 2016 Temporal dynamics of the integration of intention and outcome in harmful and helpful moral judgment Front. Psychol. 6 1 12 10.3389/fpsyg.2015.02022
Garrett D D. Samanez-Larkin G R. MacDonald S W. Lindenberger U McIntosh A R. Grady C L. 2013 Moment-to-moment brain signal variability: a next frontier in human brain mapping? Neurosci. Biobehav. Rev. 37 610 24 10.1016/j.neubiorev.2013.02.015
Gates K M. Henry T Steinley D Fair D A. 2016 A Monte Carlo evaluation of weighted community detection algorithms Front. Neuroinform. 10 45 10.3389/fninf.2016.00045
Gomez-Pilar J de Luis-García R Lubeiro A de Uribe N Poza J Núñez P Ayuso M Hornero R Molina V 2018a Deficits of entropy modulation in schizophrenia are predicted by functional connectivity strength in the theta band and structural clustering NeuroImage: Clin. 18 382 9 10.1016/j.nicl.2018.02.005
Gomez-Pilar J Poza J Bachiller A Gómez C Molina V Hornero R 2015 Neural network reorganization analysis during an auditory oddball task in schizophrenia using wavelet entropy Entropy 17 5241 56 10.3390/e17085241
Gomez-Pilar J Poza J Bachiller A Gómez C Núñez P Lubeiro A Molina V Hornero R 2018b Quantification of graph complexity based on the edge weight distribution balance: application to brain networks Int. J. Neural Syst. 28 1750032 10.1142/S0129065717500320
Gomez-Pilar J Poza J Gómez C Northoff G Lubeiro A Cea-Cañas B B. Molina V Hornero R 2018c Altered predictive capability of the brain network EEG model in schizophrenia during cognition Schizophrenia Res. 201 120 9 10.1016/j.schres.2018.04.043
Gramfort A Papadopoulo T Olivi E Clerc M 2010 OpenMEEG: opensource software for quasistatic bioelectromagnetics Biomed. Eng. Online 9 45 10.1186/1475-925X-9-45
Hansen E C. A. Battaglia D Spiegler A Deco G Jirsa V K. 2015 Functional connectivity dynamics: modeling the switching behavior of the resting state NeuroImage 105 525 35 10.1016/j.neuroimage.2014.11.001
Hindriks R Adhikari M H. Murayama Y Ganzetti M Mantini D Logothetis N K. Deco G 2016 Can sliding-window correlations reveal dynamic functional connectivity in resting-state fMRI? NeuroImage 127 242 56 10.1016/j.neuroimage.2015.11.055
Hutchison R M. et al 2013 Dynamic functional connectivity: promise, issues and interpretations NeuroImage 80 360 78 10.1016/j.neuroimage.2013.05.079
Jensen O Mazaheri A 2010 Shaping functional architecture by oscillatory alpha activity: gating by inhibition Front. Hum. Neurosci. 4 1 8 10.3389/fnhum.2010.00186
Joyce E M. Roiser J P. 2007 Cognitive heterogeneity in schizophrenia Curr. Opin. Psychiatry 20 268 72 10.1097/YCO.0b013e3280ba4975
Kam J W. Lin J J. Solbakk A K. Endestad T Larsson P G. Knight R T. 2019 Default network and frontoparietal control network theta connectivity supports internal attention Nat. Human Behav. 3 1263 70 10.1038/s41562-019-0717-0
Kapur S 2003 Psychosis as a state of aberrant salience: a framework linking biology, phenomenology and pharmacology in schizophrenia Am. J. Psychiatry 160 13 23 10.1176/appi.ajp.160.1.13
Kay S R. Fiszbein A Opler L A. 1987 The positive and negative syndrome scale (PANSS) for schizophrenia Schizophrenia Bull. 13 261 76 10.1093/schbul/13.2.261
Khambhati A N. Sizemore A E. Betzel R F. Bassett D S. 2018 Modeling and interpreting mesoscale network dynamics NeuroImage 180 337 49 10.1016/j.neuroimage.2017.06.029
Kikuchi M Wada Y Koshino Y Nanbu Y Hashimoto T 2000 Effect of normal aging upon interhemispheric EEG coherence: analysis during rest and photic stimulation Clin. Electroencephalogr. 31 170 4 10.1177/155005940003100404
Knapp M 2000 Schizophrenia costs and treatment cost-effectiveness Acta Psychiatrica Scand. Suppl. 102 15 8 10.1046/j.1467-0658.2001.00137.x-i1
Kottaram A Johnston L A. Cocchi L Ganella E P. Everall I Pantelis C Kotagiri R Zalesky A 2019 Brain network dynamics in schizophrenia: reduced dynamism of the default mode network Human Brain Mapp. 40 2212 28 10.1002/hbm.24519
Lai M Demuru M Hillebrand A Fraschini M 2018 A comparison between scalp-and source-reconstructed EEG networks Sci. Rep. 8 1 8 10.1038/s41598-018-30869-w
Lubeiro A Rueda C Hernández J A. Sanz J Sarramea F Molina V 2016 Identification of two clusters within schizophrenia with different structural, functional and clinical characteristics Prog. Neuro-Psychopharmacol. Biol. Psychiatry 64 79 86 10.1016/j.pnpbp.2015.06.015
Márton C D. Fukushima M Camalier C R. Schultz S R. Averbeck B B. 2019 Signature patterns for top-down and bottom-up information processing via cross-frequency coupling in macaque auditory cortex eNeuro 6 ENEURO.0467 18.2019 10.1523/ENEURO.0467-18.2019
Marwan N Carmen Romano M Thiel M Kurths J 2007 Recurrence plots for the analysis of complex systems Phys. Rep. 438 237 329 10.1016/j.physrep.2006.11.001
Mazziotta J et al 2001 A probabilistic atlas and reference system for the human brain: international consortium for brain mapping (ICBM) Phil. Trans. R. Soc. B 356 1293 322 10.1098/rstb.2001.0915
Molina V et al 2020 Deficits of entropy modulation of the EEG: a biomarker for altered function in schizophrenia and bipolar disorder? J. Psychiatry Neurosci. 45 322 33 10.1503/jpn.190032
Northoff G Gomez-Pilar J 2021 Overcoming rest-task divide-abnormal temporospatial dynamics and its cognition in schizophrenia Schizophrenia Bull. 47 751 65 10.1093/schbul/sbaa178
Núñez P Poza J Bachiller A Gomez-Pilar J Lubeiro A Molina V Hornero R 2017 Exploring non-stationarity patterns in schizophrenia: neural reorganization abnormalities in the alpha band J. Neural Eng. 14 046001 10.1088/1741-2552/aa6e05
Núñez P Poza J Gómez C Rodríguez-González V Hillebrand A Tewarie P Tola-Arribas M 'A Cano, M Hornero R 2021 Abnormal meta-state activation of dynamic brain networks across the Alzheimer spectrum NeuroImage 232 117898 10.1016/j.neuroimage.2021.117898
Núñez P Poza J Gómez C Rodríguez-González V Hillebrand A Tola-Arribas M A. Cano M Hornero R 2019a Characterizing the fluctuations of dynamic resting-state electrophysiological functional connectivity: reduced neuronal coupling variability in mild cognitive impairment and dementia due to Alzheimer's disease J. Neural Eng. 16 056030 10.1088/1741-2552/ab234b
Núñez P Poza J Gómez C Rodríguez-González V Hillebrand A Tola-Arribas M A. Cano M Hornero R 2019b Characterizing the fluctuations of dynamic resting-state electrophysiological functional connectivity: reduced neuronal coupling variability in mild cognitive impairment and dementia due to Alzheimer's disease J. Neural Eng. 16 056030 10.1088/1741-2552/ab234b
O'Neill G C. Tewarie P Vidaurre D Liuzzi L Woolrich M W. Brookes M J. 2018a Dynamics of large-scale electrophysiological networks: a technical review NeuroImage 180 559 76 10.1016/j.neuroimage.2017.10.003
O'Neill G C. Tewarie P Vidaurre D Liuzzi L Woolrich M W. Brookes M J. 2018b Dynamics of large-scale electrophysiological networks: a technical review NeuroImage 180 559 76 10.1016/j.neuroimage.2017.10.003
Owen M J. Sawa A Mortensen P B. 2016 Schizophrenia Lancet 388 86 97 10.1016/S0140-6736(15)01121-6
Pascual-Marqui R D. 2002 Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details Methods Find Exp. Clin. Pharmacol. 24 5 12
Polich J 2007 Updating P300: an integrative theory of P3a and P3b Clin. Neurophysiol. 118 2128 48 10.1016/j.clinph.2007.04.019
Ponce-Alvarez A Deco G Hagmann P Romani G L. Mantini D Corbetta M 2015 Resting-state temporal synchronization networks emerge from connectivity topology and heterogeneity PLOS Computat. Biol. 11 e1004100 10.1371/journal.pcbi.1004100
Poza J Gómez C García M Tola-Arribas M A. Carreres A Cano M Hornero R 2017 Spatio-temporal fluctuations of neural dynamics in mild cognitive impairment and Alzheimer's disease Curr. Alzheimer Res. 14 924 36 10.2174/1567205014666170309115656
Rabany L et al 2019 Dynamic functional connectivity in schizophrenia and autism spectrum disorder: convergence, divergence and classification NeuroImage: Clin. 24 101966 10.1016/j.nicl.2019.101966
Ramirez-Mahaluf J P. Medel V Tepper A Alliende L M. Sato J R. Ossandon T Crossley N A. 2020 Transitions between human functional brain networks reveal complex, cost-efficient and behaviorally-relevant temporal paths NeuroImage 219 117027 10.1016/j.neuroimage.2020.117027
Rashid B Arbabshirani M R. Damaraju E Cetin M S. Miller R Pearlson G D. Calhoun V D. 2016 Classification of schizophrenia and bipolar patients using static and dynamic resting-state fMRI brain connectivity NeuroImage 134 645 57 10.1016/j.neuroimage.2016.04.051
Rashid B Damaraju E Pearlson G D. Calhoun V D. 2014 Dynamic connectivity states estimated from resting fMRI identify differences among schizophrenia, bipolar disorder and healthy control subjects Front. Hum. Neurosci. 8 897 10.3389/fnhum.2014.00897
Richter C G. Coppola R Bressler S L. 2018 Top-down beta oscillatory signaling conveys behavioral context in early visual cortex Sci. Rep. 8 1 12 10.1038/s41598-018-25267-1
Ritter P Villringer A 2006 Simultaneous EEG-fMRI Neurosci. Biobehav. Rev. 30 823 38 10.1016/j.neubiorev.2006.06.008
Roach B J. Mathalon D H. 2008 Event-related EEG time-frequency analysis: an overview of measures and an analysis of early gamma band phase locking in schizophrenia Schizophrenia Bull. 34 907 26 10.1093/schbul/sbn093
Saha S Chant D Welham J McGrath J 2005 A systematic review of the prevalence of schizophrenia PLoS Med. 2 0413 33 10.1371/journal.pmed.0020141
Sakoǧlu U Pearlson G D. Kiehl K A. Wang Y M. Michael A M. Calhoun V D. 2010 A method for evaluating dynamic functional network connectivity and task-modulation: application to schizophrenia Magn. Reson. Mater. Phys. Biol. Med. 23 351 66 10.1007/s10334-010-0197-8
Santo-Angles A et al 2021 Interindividual variability of functional connectome in schizophrenia Schizophrenia Res. 235 65 73 10.1016/j.schres.2021.07.010
Schmiedt C Brand A Hildebrandt H Basar-Eroglu C 2005 Event-related theta oscillations during working memory tasks in patients with schizophrenia and healthy controls Cogn. Brain Res. 25 936 47 10.1016/j.cogbrainres.2005.09.015
Segarra N et al 2011 Spanish validation of the brief assessment in cognition in schizophrenia (BACS) in patients with schizophrenia and healthy controls Eur. Psychiatry 26 69 73 10.1016/j.eurpsy.2009.11.001
Sterzer P Voss M Schlagenhauf F Heinz A 2019 Decision-making in schizophrenia: a predictive-coding perspective NeuroImage 190 133 43 10.1016/j.neuroimage.2018.05.074
Tadel F Baillet S Mosher J C. Pantazis D Leahy R M. 2011 Brainstorm: a user-friendly application for MEG/EEG analysis Computat. Intell. Neurosci. 2011 879716 10.1155/2011/879716
Takahashi T Cho R Y. Mizuno T Kikuchi M Murata T Takahashi K Wada Y 2010 Antipsychotics reverse abnormal EEG complexity in drug-naive schizophrenia: a multiscale entropy analysis NeuroImage 51 173 82 10.1016/j.neuroimage.2010.02.009
Tao Q Si Y Li F Li P Li Y Zhang S Wan F Yao D Xu P 2021 Decision-feedback stages revealed by hidden Markov modeling of EEG Int. J. Neural Syst. 31 2150031 10.1142/S0129065721500313
Tewarie P Liuzzi L O'Neill G C. Quinn A J. Griffa A Woolrich M W. Stam C J. Hillebrand A Brookes M J. 2019 Tracking dynamic brain networks using high temporal resolution MEG measures of functional connectivity NeuroImage 200 38 50 10.1016/j.neuroimage.2019.06.006
Theiler J Eubank S Longtin A Galdrikian B Doyne Farmer J 1992 Testing for nonlinearity in time series: the method of surrogate data Physica D 58 77 94 10.1016/0167-2789(92)90102-S
Tognoli E Kelso J A. S. 2014 The metastable brain Neuron 81 35 48 10.1016/j.neuron.2013.12.022
Vohryzek J Deco G Cessac B Kringelbach M L. Cabral J 2020 Ghost attractors in spontaneous brain activity: recurrent excursions into functionally-relevant BOLD phase-locking states Front. Syst. Neurosci. 14 1 15 10.3389/fnsys.2020.00020
Waschke L Kloosterman N A. Obleser J Garrett D D. 2021 Behavior needs neural variability Neuron 109 751 66 10.1016/j.neuron.2021.01.023
Webber C L. Zbilut J P. 2005 Recurrence quantification analysis of nonlinear dynamical systems Tutorials in Contemporary Nonlinear Methods for the Behavioral Sciences Web Book Riley M A Van Orden G C Alexandria, VA National Science Foundation pp 26 94
Weber S Johnsen E Kroken R A. Loberg E M. Kandilarova S Stoyanov D Kompus K Hugdahl K 2020 Dynamic functional connectivity patterns in schizophrenia and the relationship with hallucinations Front. Psychiatry 11 1 9 10.3389/fpsyt.2020.00227
Wolff A Gomez-Pilar J Zhang J Choueiry J de la Salle S Knott V Northoff G 2021 It's in the timing: reduced temporal precision in neural activity of schizophrenia Cerebral Cortex 1 16 10.1093/cercor/bhab425
Wolff A Yao L Gomez-Pilar J Shoaran M Jiang N Northoff G 2019 Neural variability quenching during decision-making: neural individuality and its prestimulus complexity NeuroImage 192 1 14 10.1016/j.neuroimage.2019.02.070
Xia M Wang J He Y 2013 BrainNet viewer: a network visualization tool for human brain connectomics PLoS One 8 e68910 10.1371/journal.pone.0068910
Yaesoubi M Miller R L. Bustillo J Lim K O. Vaidya J Calhoun V D. 2017 A joint time-frequency analysis of resting-state functional connectivity reveals novel patterns of connectivity shared between or unique to schizophrenia patients and healthy controls NeuroImage: Clin. 15 761 8 10.1016/j.nicl.2017.06.023
Zhou Q Zhang L Feng J Lo C Y. Z. 2019 Tracking the main states of dynamic functional connectivity in resting state Front. Neurosci. 13 1 12 10.3389/fnins.2019.00685
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.