Earth and Planetary Sciences (miscellaneous); Space and Planetary Science; astro-ph.EP; atmospheres
Abstract :
[en] We analyze Hubble Space Telescope observations of Ganymede made with the Space Telescope Imaging Spectrograph between 1998 and 2017 to generate a brightness map of Ganymede's oxygen emission at 1,356 Å. Our Mercator projected map demonstrates that the brightness along Ganymede's northern and southern auroral ovals strongly varies with longitude. To quantify this variation around Ganymede, we investigate the brightness averaged over 36°-wide longitude corridors centered around the sub-Jovian (0° W), leading (90° W), anti-Jovian (180° W), and trailing (270° W) central longitudes. In the northern hemisphere, the brightness of the auroral oval is 3.7 ± 0.4 times lower in the sub-Jovian and anti-Jovian corridors compared to the trailing and leading corridors. The southern oval is overall brighter than the northern oval, and only 2.5 ± 0.2 times fainter on the sub- and anti-Jovian corridors compared to the trailing and leading corridors. This demonstrates that Ganymede's auroral ovals are strongly structured in auroral crescents on the leading side (plasma downstream side) and on the trailing side (plasma upstream side). We also find that the brightness is not symmetric with respect to the 270° meridian, but shifted by ∼20° towards the Jovian-facing hemisphere. Our map will be useful for subsequent studies to understand the processes that generate the aurora in Ganymede's non-rotationally driven, sub-Alfvénic magnetosphere.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Marzok, Alexander; Institute of Geophysics and Meteorology, University of Cologne, Cologne, Germany
Schlegel, Stehpan ; Institute of Geophysics and Meteorology, University of Cologne, Cologne, Germany
Saur, Joachim ; Institute of Geophysics and Meteorology, University of Cologne, Cologne, Germany
Roth, Lorenz ; School of Electrical Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
Grodent, Denis ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Strobel, Darrell F. ; Department of Earth and Planetary Science, and Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, United States
Retherford, Kurt D. ; Southwest Research Institute, San Antonio, United States ; University of Texas at San Antonio, San Antonio, United States
Language :
English
Title :
Mapping the Brightness of Ganymede's Ultraviolet Aurora Using Hubble Space Telescope Observations
This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (Grant Agreement No. 884711). Open access funding enabled and organized by Projekt DEAL.
Commentary :
Accepted for Publication in Journal of Geophysical Research (Planets)
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Alday, J., Roth, L., Ivchenko, N., Retherford, K. D., Becker, T. M., Molyneux, P., & Saur, J. (2017). New constraints on Ganymede’s hydrogen corona: Analysis of Lyman-α emissions observed by HST/STIS between 1998 and 2014. Planetary and Space Science, 148, 35–44. https://doi.org/10.1016/j.pss.2017.10.006
Bhardwaj, A., & Gladstone, G. R. (2000). Auroral emissions of the giant planets. Review of Geophysics, 38(3), 295–353. https://doi.org/10.1029/1998rg000046
Bolton, S. J., Lunine, J., Stevenson, D., Connerney, J. E. P., Levin, S., Owen, T. C., et al. (2017). The Juno mission. Space Science Reviews, 213(1–4), 5–37. https://doi.org/10.1007/s11214-017-0429-6
Bonfond, B., Grodent, D., Badman, S. V., Saur, J., Gérard, J.-C., & Radioti, A. (2017). Similarity of the Jovian satellite footprints: Spots multiplicity and dynamics. Icarus, 292, 208–217. https://doi.org/10.1016/j.icarus.2017.01.009
Carnielli, G., Galand, M., Leblanc, F., Leclercq, L., Modolo, R., Beth, A., et al. (2019). First 3D test particle model of Ganymede’s ionosphere. Icarus, 330, 42–59. https://doi.org/10.1016/j.icarus.2019.04.016
Clarke, J. T., Gérard, J.-C., Grodent, D., Wannawichian, S., Gustin, J., Connerney, J., et al. (2005). Morphological differences between Saturn’s ultraviolet aurorae and those of Earth and Jupiter. Nature, 433(7027), 717–719. https://doi.org/10.1038/nature03331
Collinson, G., Paterson, W. R., Bard, C., Dorelli, J., Glocer, A., Sarantos, M., & Wilson, R. (2018). New results from Galileo’s first flyby of Ganymede: Reconnection-driven flows at the low-latitude magnetopause boundary, crossing the cusp, and icy ionospheric escape. Geophysical Research Letters, 45(8), 3382–3392. https://doi.org/10.1002/2017GL075487
Dorelli, J. C., Glocer, A., Collinson, G., & Tóth, G. (2015). The role of the Hall effect in the global structure and dynamics of planetary magnetospheres: Ganymede as a case study. Journal of Geophysical Research: Space Physics, 120(7), 5377–5392. https://doi.org/10.1002/2014JA020951
Duling, S., Saur, J., & Wicht, J. (2014). Consistent boundary conditions at nonconducting surfaces of planetary bodies: Applications in a new Ganymede MHD model. Journal of Geophysical Research: Space Physics, 119(6), 4412–4440. https://doi.org/10.1002/2013JA019554
Eviatar, A., Strobel, D. F., Wolfven, B. C., Feldman, P., McGrath, M. A., & Williams, D. J. (2001). Excitation of the Ganymede ultraviolet aurora. The Astrophysical Journal, 555(2), 1013–1019. https://doi.org/10.1086/321510
Eviatar, A., Williams, D. J., Paranicas, C., McEntire, R. W., Mauk, B. H., & Kivelson, M. G. (2000). Trapped energetic electrons in the magnetosphere of Ganymede. Journal of Geophysical Research, 105(A3), 5547–5554. https://doi.org/10.1029/1999JA900450
Fatemi, S., Poppe, A. R., Khurana, K. K., Holmström, M., & Delory, G. T. (2016). On the formation of Ganymede’s surface brightness asymmetries: Kinetic simulations of Ganymede’s magnetosphere. Geophysical Research Letters, 43(10), 4745–4754. https://doi.org/10.1002/2016GL068363
Feldman, P. D., McGrath, M. A., Strobel, D. F., Moos, H. W., Retherford, K. D., & Wolven, B. C. (2000). HST/STIS ultraviolet imaging of polar aurora on Ganymede. The Astrophysical Journal, 555(2), 1085–1090. https://doi.org/10.1086/308889
Ford, H. (2002). Jovian satellites. HST Proposal. Retrieved from https://archive.stsci.edu/proposal_search.php?mission=hst&id=9296
Grasset, O., Dougherty, M. K., Coustenis, A., Bunce, E. J., Erd, C., Titov, D., et al. (2013). JUpiter ICy moons Explorer (JUICE): An ESA mission to orbit Ganymede and to characterise the Jupiter system. Planetary and Space Science, 78, 1–21. https://doi.org/10.1016/j.pss.2012.12.002
Grodent, D. C. (2016). HST-Juno synergistic approach of Jupiter’s magnetosphere and ultraviolet auroras. HST Proposal. Retrieved from https://archive.stsci.edu/proposal_search.php?id=14634&mission=hst
Hall, D. T., Feldman, P. D., McGrath, M. A., & Strobel, D. F. (1998). The far-ultraviolet oxygen airglow of Europa and Ganymede. The Astrophysical Journal, 499(5), 475–481. https://doi.org/10.1086/305604
Jia, X., Walker, R., Kivelson, M., Khurana, K., & Linker, J. (2008). Three-dimensional MHD simulations of Ganymede’s magnetosphere. Journal of Geophysical Research, 113(A6), A06212. https://doi.org/10.1029/2007ja012748
Jia, X., Walker, R., Kivelson, M., Khurana, K., & Linker, J. (2009). Properties of Ganymede’s magnetosphere inferred from improved three-dimensional MHD simulations. Journal of Geophysical Research, 114(A9), A09209. https://doi.org/10.1029/2009JA014375
Kivelson, M. G., Khurana, K. K., & Volwerk, M. (2002). The permanent and inductive magnetic moments of Ganymede. Icarus, 157(2), 507–522. https://doi.org/10.1006/icar.2002.6834
Kivelson, M. G., Khurana, K. K., Walker, R. J., Russell, C. T., Linker, J. A., Southwood, D. J., & Polanskey, C. (1996). A magnetic signature at Io: Initial report from the Galileo magnetometer. Science, 273(5273), 337–340. https://doi.org/10.1126/science.273.5273.337
Knight, S. (1973). Parallel electric fields. Planetary and Space Science, 21(5), 741–750. https://doi.org/10.1016/0032-0633(73)90093-7
Kopp, A., & Ip, W. (2002). Resistive MHD simulations of Ganymede’s magnetosphere: 1. Time variabilities of the magnetic field topology. Journal of Geophysical Research, 107, SMP-41. https://doi.org/10.1029/2001ja005071
Krist, J. E., Hook, R. N., & Stoehr, F. (2011). 20 years of Hubble Space Telescope optical modeling using tiny tim. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (Vol. 8127). https://doi.org/10.1117/12.892762
Lamy, L., Prangé, R., Hansen, K. C., Clarke, J. T., Zarka, P., Cecconi, B., et al. (2012). Earth-based detection of Uranus’ aurorae. Geophysical Research Letters, 39(7), L07105. https://doi.org/10.1029/2012GL051312
Leblanc, F., Oza, A. V., Leclercq, L., Schmidt, C., Cassidy, T., Modolo, R., et al. (2017). On the orbital variability of Ganymede’s atmosphere. Icarus, 293, 185–198. https://doi.org/10.1016/j.icarus.2017.04.025
Liuzzo, L., Poppe, A. R., Paranicas, C., Nénon, Q., Fatemi, S., & Simon, S. (2020). Variability in the energetic electron bombardment of Ganymede. Journal of Geophysical Research: Space Physics, 125(9), e28347. https://doi.org/10.1029/2020JA028347
Lysak, R. L., & Lotko, W. (1996). On the kinetic dispersion relation for shear Alfvén waves. Journal of Geophysical Research, 101(A3), 5085–5094. https://doi.org/10.1029/95ja03712
Marconi, M. L. (2007). A kinetic model of Ganymede’s atmosphere. Icarus, 190(1), 155–174. https://doi.org/10.1016/j.icarus.2007.02.016
Marzok, A., Schlegel, S., Saur, J., Roth, L., Grodent, D., Strobel, D. F., & Retherford, K. D. (2022). Figure data for “Mapping the brightness of Ganymede’s ultraviolet aurora using Hubble Space Telescope observations”. Zenodo. https://doi.org/10.5281/zenodo.6564687
McGrath, M. (1999). UV imaging of Europa & Ganymede: Unveiling satellite aurora & electrodynamical interactions. HST Proposal. Retrieved from https://archive.stsci.edu/proposal_search.php?mission=hst&id=8224
McGrath, M. A., Jia, X., Retherford, K. D., Feldman, P. D., Strobel, D. F., & Saur, J. (2013). Aurora on Ganymede. Journal of Geophysical Research: Space Physics, 118(5), 2043–2054. https://doi.org/10.1002/jgra.50122
Molyneux, P. M., Nichols, J. D., Bannister, N. P., Bunce, E. J., Clarke, J. T., Cowley, S. W. H., et al. (2018). Hubble Space Telescope observations of variations in Ganymede’s oxygen atmosphere and aurora. Journal of Geophysical Research: Space Physics, 123(5), 3777–3793. https://doi.org/10.1029/2018JA025243
Molyneux, P. M., Nichols, J. D., Becker, T. M., Raut, U., & Retherford, K. D. (2020). Ganymede’s far-ultraviolet reflectance: Constraining impurities in the surface ice. Journal of Geophysical Research: Planets, 125(9), e06476. https://doi.org/10.1029/2020JE006476
Moos, H. (1997). STIS determination of OI emissions from Ganymede. HST Proposal. Retrieved from https://archive.stsci.edu/proposal_search.php?id=7939&mission=hst
Musacchio, F., Saur, J., Roth, L., Retherford, K. D., McGrath, M. A., Feldman, P. D., & Strobel, D. F. (2017). Morphology of Ganymede’s FUV auroral ovals. Journal of Geophysical Research: Space Physics, 122(3), 2855–2876. https://doi.org/10.1002/2016JA023220
Neubauer, F. M. (1998). The sub-Alfvénic interaction of the Galilean satellites with the Jovian magnetosphere. Journal of Geophysical Research, 103(E9), 19843–19866. https://doi.org/10.1029/97je03370
Nichols, J. (2013). Observing Ganymede’s atmosphere and auroras with COS and STIS. HST Proposal. Retrieved from https://archive.stsci.edu/proposal_search.php?mission=hst&id=13328
Paty, C., & Winglee, R. (2004). Multi-fluid simulations of Ganymede’s magnetosphere. Geophysical Research Letters, 31(24), L24806. https://doi.org/10.1029/2004gl021220
Paty, C., & Winglee, R. (2006). The role of ion cyclotron motion at Ganymde: Magnetic morphology and magnetospheric dynamics. Geophysical Research Letters, 33(10), L10106. https://doi.org/10.1029/2005gl025273
Plainaki, C., Massetti, S., Jia, X., Mura, A., Milillo, A., Grassi, D., et al. (2020). Kinetic simulations of the Jovian energetic ion circulation around Ganymede. The Astrophysical Journal, 900(1), 74. https://doi.org/10.3847/1538-4357/aba94c
Riley, A. (2017). STIS Instrument Handbook (Version 16.0). STScI.
Roth, L., Ivchenko, N., Gladstone, G. R., Saur, J., Grodent, D., Bonfond, B., et al. (2021). A sublimated water atmosphere on Ganymede detected from Hubble Space Telescope observations. Nature Astronomy, 5(10), 1043–1051. https://doi.org/10.1038/s41550-021-01426-9
Roth, L., Saur, J., Retherford, K. D., Feldman, P. D., & Strobel, D. F. (2014). A phenomenological model of Io’s UV aurora based on HST/STIS observations. Icarus, 228, 386–406. https://doi.org/10.1016/j.icarus.2013.10.009
Roth, L., Saur, J., Retherford, K. D., Strobel, D. F., Feldman, P. D., McGrath, M. A., & Nimmo, F. (2014). Transient water vapor at Europa’s south pole. Science, 343(6167), 171–174. https://doi.org/10.1126/science.1247051
Saur, J. (2010). Mapping Ganymede’s time variable aurora in the search for a subsurface ocean. HST Proposal. Retrieved from https://archive.stsci.edu/proposal_search.php?mission=hst&id=12244
Saur, J., Duling, S., Roth, L., Jia, X., Strobel, D. F., Feldman, P. D., et al. (2015). The search for a subsurface ocean in Ganymede with Hubble Space Telescope observations of its auroral ovals. Journal of Geophysical Research: Space Physics, 120(3), 1715–1737. https://doi.org/10.1002/2014JA020778
Saur, J., Grambusch, T., Duling, S., Neubauer, F. M., & Simon, S. (2013). Magnetic energy fluxes in sub-Alfvénic planet star and moon planet interactions. Astronomy & Astrophysics, 552, A119. https://doi.org/10.1051/0004-6361/201118179
Saur, J., Janser, S., Schreiner, A., Clark, G., Mauk, B. H., Kollmann, P., et al. (2018). Wave-particle interaction of Alfvén waves in Jupiter’s magnetosphere: Auroral and magnetospheric particle acceleration. Journal of Geophysical Research: Space Physics, 123(11), 9560–9573. https://doi.org/10.1029/2018JA025948
Saur, J., Neubauer, F. M., Strobel, D. F., & Summers, M. E. (1999). Three-dimensional plasma simulation of Io’s interaction with the Io plasma torus: Asymmetric plasma flow. Journal of Geophysical Research, 104(A11), 25105–25126. https://doi.org/10.1029/1999ja900304
Saur, J., Willmes, C., Fischer, C., Wennmacher, A., Roth, L., Youngblood, A., et al. (2021). Brown dwarfs as ideal candidates for detecting UV aurora outside the Solar System: Hubble Space Telescope observations of 2MASS J1237+6526. Astronomy & Astrophysics, 655, A75. https://doi.org/10.1051/0004-6361/202040230
Strobel, D. F. (2005). Comparative planetary atmospheres of the Galilean satellites. Highlights of Astronomy, 13, 894–895. https://doi.org/10.1017/s1539299600017433
Tóth, G., Jia, X., Markidis, S., Peng, I. B., Chen, Y., Daldorff, L. K. S., et al. (2016). Extended magnetohydrodynamics with embedded particle-in-cell simulation of Ganymede’s magnetosphere. Journal of Geophysical Research: Space Physics, 121(2), 1273–1293. https://doi.org/10.1002/2015JA021997
Zarka, P. (2007). Plasma interactions of exoplanets with their parent star and associated radio emissions. Planetary and Space Science, 55(5), 598–617. https://doi.org/10.1016/j.pss.2006.05.045
Zhou, H., Tóth, G., Jia, X., & Chen, Y. (2020). Reconnection-driven dynamics at Ganymede’s upstream magnetosphere: 3-D global Hall MHD and MHD-EPIC simulations. Journal of Geophysical Research: Space Physics, 125(8), e28162. https://doi.org/10.1029/2020JA028162
Zhou, H., Tóth, G., Jia, X., Chen, Y., & Markidis, S. (2019). Embedded kinetic simulation of Ganymede’s magnetosphere: Improvements and inferences. Journal of Geophysical Research: Space Physics, 124(7), 5441–5460. https://doi.org/10.1029/2019JA026643
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.