Ca(2+) signaling; G-protein-coupled receptors; TRP; TRPC C; mass spectrometry; neurons; patch clamp; protein biochemistry; proteomics; transient receptor potential channels; General Neuroscience
Abstract :
[en] In the mammalian brain TRPC channels, a family of Ca2+-permeable cation channels, are involved in a variety of processes from neuronal growth and synapse formation to transmitter release, synaptic transmission and plasticity. The molecular appearance and operation of native TRPC channels, however, remained poorly understood. Here, we used high-resolution proteomics to show that TRPC channels in the rodent brain are macro-molecular complexes of more than 1 MDa in size that result from the co-assembly of the tetrameric channel core with an ensemble of interacting proteins (interactome). The core(s) of TRPC1-, C4-, and C5-containing channels are mostly heteromers with defined stoichiometries for each subtype, whereas TRPC3, C6, and C7 preferentially form homomers. In addition, TRPC1/C4/C5 channels may co-assemble with the metabotropic glutamate receptor mGluR1, thus guaranteeing both specificity and reliability of channel activation via the phospholipase-Ca2+ pathway. Our results unveil the subunit composition of native TRPC channels and resolve the molecular details underlying their activation.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Kollewe, Astrid; Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
Schwarz, Yvonne; Institute of Physiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421 Homburg, Germany
Oleinikov, Katharina; Institute of Physiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421 Homburg, Germany
Raza, Ahsan; Experimental and Clinical Pharmacology and Toxicology, PZMS, Saarland University, 66421 Homburg, Germany
Haupt, Alexander; Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
Wartenberg, Philipp; Experimental and Clinical Pharmacology and Toxicology, PZMS, Saarland University, 66421 Homburg, Germany
Wyatt, Amanda; Experimental and Clinical Pharmacology and Toxicology, PZMS, Saarland University, 66421 Homburg, Germany
Boehm, Ulrich; Experimental and Clinical Pharmacology and Toxicology, PZMS, Saarland University, 66421 Homburg, Germany
Ectors, Fabien ; Université de Liège - ULiège > Fundamental and Applied Research for Animals and Health (FARAH) > FARAH: Santé publique vétérinaire
Bildl, Wolfgang; Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
Zolles, Gerd; Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
Schulte, Uwe; Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany, Signalling Research Centres BIOSS and CIBSS, Schänzlestr. 18, 79104 Freiburg, Germany
Bruns, Dieter; Institute of Physiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421 Homburg, Germany
Flockerzi, Veit; Experimental and Clinical Pharmacology and Toxicology, PZMS, Saarland University, 66421 Homburg, Germany. Electronic address: veit.flockerzi@uks.eu
Fakler, Bernd ; Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany, Signalling Research Centres BIOSS and CIBSS, Schänzlestr. 18, 79104 Freiburg, Germany, Center for Basics in NeuroModulation, Breisacherstr. 4, 79106 Freiburg, Germany. Electronic address: bernd.fakler@physiologie.uni-freiburg.de
Bai, Y., Yu, X., Chen, H., Horne, D., White, R., Wu, X., Lee, P., Gu, Y., Ghimire-Rijal, S., Lin, D.C., Huang, X., Structural basis for pharmacological modulation of the TRPC6 channel. eLife, 9, 2020, e53311, 10.7554/eLife.53311.
Bai, Z., Feng, J., Franken, G.A.C., Al'Saadi, N., Cai, N., Yu, A.S., Lou, L., Komiya, Y., Hoenderop, J.G.J., de Baaij, J.H.F., Yue, L., Runnels, L.W., CNNM proteins selectively bind to the TRPM7 channel to stimulate divalent cation entry into cells. PLoS Biol., 19, 2021, e3001496, 10.1371/journal.pbio.3001496.
Berkefeld, H., Fakler, B., Ligand-gating by Ca2+ is rate limiting for physiological operation of BK(Ca) channels. J. Neurosci. 33 (2013), 7358–7367, 10.1523/JNEUROSCI.5443-12.2013.
Berkefeld, H., Sailer, C.A., Bildl, W., Rohde, V., Thumfart, J.O., Eble, S., Klugbauer, N., Reisinger, E., Bischofberger, J., Oliver, D., et al. BKCa-Cav channel complexes mediate rapid and localized Ca2+-activated K+ signaling. Science 314 (2006), 615–620, 10.1126/science.1132915.
Bezzerides, V.J., Ramsey, I.S., Kotecha, S., Greka, A., Clapham, D.E., Rapid vesicular translocation and insertion of TRP channels. Nat. Cell Biol. 6 (2004), 709–720, 10.1038/ncb1150.
Bildl, W., Haupt, A., Müller, C.S., Biniossek, M.L., Thumfart, J.O., Hüber, B., Fakler, B., Schulte, U., Extending the dynamic range of label-free mass spectrometric quantification of affinity purifications. Mol. Cell. Proteomics, 11, 2012, 10.1074/mcp.M111.007955 M111.007955.
Blair, N.T., Carvacho, I., Chaudhuri, D., Clapham, D.E., DeCaen, P., Delling, M., Doerner, J.F., Fan, L., Ha, K., Jordt, S.E., et al. Transient receptor potential channels (TRP) in GtoPdb v.2021.3. IUPHAR/BPS Guide to Pharmacology CITE, 2021, 2021, 10.2218/gtopdb/F78/2021.3.
Blair, N.T., Kaczmarek, J.S., Clapham, D.E., Intracellular calcium strongly potentiates agonist-activated TRPC5 channels. J. Gen. Physiol. 133 (2009), 525–546, 10.1085/jgp.200810153.
Boudkkazi, S., Brechet, A., Schwenk, J., Fakler, B., Cornichon2 dictates the time course of excitatory transmission at individual hippocampal synapses. Neuron 82 (2014), 848–858, 10.1016/j.neuron.2014.03.031.
Brechet, A., Buchert, R., Schwenk, J., Boudkkazi, S., Zolles, G., Siquier-Pernet, K., Schaber, I., Bildl, W., Saadi, A., Bole-Feysot, C., et al. AMPA-receptor specific biogenesis complexes control synaptic transmission and intellectual ability. Nat. Commun., 8, 2017, 15910, 10.1038/ncomms15910.
Bröker-Lai, J., Kollewe, A., Schindeldecker, B., Pohle, J., Nguyen Chi, V., Mathar, I., Guzman, R., Schwarz, Y., Lai, A., Weißgerber, P., et al. Heteromeric channels formed by TRPC1, TRPC4 and TRPC5 define hippocampal synaptic transmission and working memory. EMBO J. 36 (2017), 2770–2789, 10.15252/embj.201696369.
Camacho Londoño, J.E., Tian, Q., Hammer, K., Schröder, L., Camacho Londoño, J., Reil, J.C., He, T., Oberhofer, M., Mannebach, S., Mathar, I., et al. A background Ca2+ entry pathway mediated by TRPC1/TRPC4 is critical for development of pathological cardiac remodelling. Eur. Heart J. 36 (2015), 2257–2266, 10.1093/eurheartj/ehv250.
Cerny, A.C., Huber, A., Regulation of TRP signalling by ion channel translocation between cell compartments. Adv. Exp. Med. Biol. 704 (2011), 545–572, 10.1007/978-94-007-0265-3_30.
Chen, X., Lu, M., He, X., Ma, L., Birnbaumer, L., Liao, Y., TRPC3/6/7 Knockdown Protects the Brain from Cerebral ischemia Injury via Astrocyte Apoptosis Inhibition and Effects on NF-small ka, CyrillicB Translocation. Mol. Neurobiol. 54 (2017), 7555–7566, 10.1007/s12035-016-0227-2.
Chen, Z., Montell, C., A family of auxiliary subunits of the TRP cation channel encoded by the complex inaF locus. Genetics 215 (2020), 713–728.
Cheng, Y., Nash, H.A., Drosophila TRP channels require a protein with a distinctive motif encoded by the inaF locus. Proc. Natl. Acad. Sci. USA 104 (2007), 17730–17734, 10.1073/pnas.0708368104.
Chung, Y.H., Sun Ahn, H., Kim, D., Hoon Shin, D., Su Kim, S., Yong Kim, K., Bok Lee, W., Ik Cha, C., Immunohistochemical study on the distribution of TRPC channels in the rat hippocampus. Brain Res. 1085 (2006), 132–137, 10.1016/j.brainres.2006.02.087.
Dietrich, A., Kalwa, H., Storch, U., Mederos y Schnitzler, M., Salanova, B., Pinkenburg, O., Dubrovska, G., Essin, K., Gollasch, M., Birnbaumer, L., Gudermann, T., Pressure-induced and store-operated cation influx in vascular smooth muscle cells is independent of TRPC1. Pflugers Arch. 455 (2007), 465–477, 10.1007/s00424-007-0314-3.
Dietrich, A., Mederos, Y.S.M., Gollasch, M., Gross, V., Storch, U., Dubrovska, G., Obst, M., Yildirim, E., Salanova, B., Kalwa, H., et al. Increased vascular smooth muscle contractility in TRPC6-/- mice. Mol. Cell. Biol. 25 (2005), 6980–6989, 10.1128/MCB.25.16.6980-6989.2005.
Dinamarca, M.C., Raveh, A., Schneider, A., Fritzius, T., Früh, S., Rem, P.D., Stawarski, M., Lalanne, T., Turecek, R., Choo, M., et al. Complex formation of APP with GABAB receptors links axonal trafficking to amyloidogenic processing. Nat. Commun., 10, 2019, 1331, 10.1038/s41467-019-09164-3.
Dong, H.W., Hayar, A., Callaway, J., Yang, X.H., Nai, Q., Ennis, M., Group I mGluR activation enhances Ca2+-dependent nonselective cation currents and rhythmic bursting in main olfactory bulb external tufted cells. J. Neurosci. 29 (2009), 11943–11953, 10.1523/JNEUROSCI.0206-09.2009.
Duan, J., Li, J., Chen, G.L., Ge, Y., Liu, J., Xie, K., Peng, X., Zhou, W., Zhong, J., Zhang, Y., et al. Cryo-EM structure of TRPC5 at 2.8-A resolution reveals unique and conserved structural elements essential for channel function. Sci. Adv., 5, 2019, eaaw7935, 10.1126/sciadv.aaw7935.
Dymecki, S.M., Flp recombinase promotes site-specific DNA recombination in embryonic stem cells and transgenic mice. Proc. Natl. Acad. Sci. USA 93 (1996), 6191–6196, 10.1073/pnas.93.12.6191.
El-Hassar, L., Hagenston, A.M., D'Angelo, L.B., Yeckel, M.F., Metabotropic glutamate receptors regulate hippocampal CA1 pyramidal neuron excitability via Ca2+ wave-dependent activation of SK and TRPC channels. J. Physiol. 589 (2011), 3211–3229, 10.1113/jphysiol.2011.209783.
Fakler, B., Adelman, J.P., Control of KCa channels by calcium Nano/microdomains. Neuron 59 (2008), 873–881, 10.1016/j.neuron.2008.09.001.
Flockerzi, V., Jung, C., Aberle, T., Meissner, M., Freichel, M., Philipp, S.E., Nastainczyk, W., Maurer, P., Zimmermann, R., Specific detection and semi-quantitative analysis of TRPC4 protein expression by antibodies. Pflugers Arch. 451 (2005), 81–86, 10.1007/s00424-005-1443-1.
Fogel, B.L., Hanson, S.M., Becker, E.B., Do mutations in the murine ataxia gene TRPC3 cause cerebellar ataxia in humans?. Mov. Disord. 30 (2015), 284–286, 10.1002/mds.26096.
Freichel, M., Suh, S.H., Pfeifer, A., Schweig, U., Trost, C., Weissgerber, P., Biel, M., Philipp, S., Freise, D., Droogmans, G., et al. Lack of an endothelial store-operated Ca2+ current impairs agonist-dependent vasorelaxation in TRP4-/- mice. Nat. Cell Biol. 3 (2001), 121–127, 10.1038/35055019.
Freichel, M., Vennekens, R., Olausson, J., Stolz, S., Philipp, S.E., Weissgerber, P., Flockerzi, V., Functional role of TRPC proteins in native systems: implications from knockout and knock-down studies. J. Physiol. 567 (2005), 59–66, 10.1113/jphysiol.2005.092999.
Gaudet, R., TRP channels entering the structural era. J. Physiol. 586 (2008), 3565–3575, 10.1113/jphysiol.2008.155812.
Gee, C.E., Benquet, P., Gerber, U., Group I metabotropic glutamate receptors activate a calcium-sensitive transient receptor potential-like conductance in rat hippocampus. J. Physiol. 546 (2003), 655–664, 10.1113/jphysiol.2002.032961.
Gross, S.A., Guzmán, G.A., Wissenbach, U., Philipp, S.E., Zhu, M.X., Bruns, D., Cavalié, A., TRPC5 is a Ca2+-activated channel functionally coupled to Ca2+-selective ion channels. J. Biol. Chem. 284 (2009), 34423–34432, 10.1074/jbc.M109.018192.
Hartmann, J., Dragicevic, E., Adelsberger, H., Henning, H.A., Sumser, M., Abramowitz, J., Blum, R., Dietrich, A., Freichel, M., Flockerzi, V., et al. TRPC3 channels are required for synaptic transmission and motor coordination. Neuron 59 (2008), 392–398, 10.1016/j.neuron.2008.06.009.
Heukeshoven, J., Dernick, R., Improved silver staining procedure for fast staining in PhastSystem Development Unit. I. Staining of sodium dodecyl sulfate gels. Electrophoresis 9 (1988), 28–32, 10.1002/elps.1150090106.
Hirnet, D., Olausson, J., Fecher-Trost, C., Bödding, M., Nastainczyk, W., Wissenbach, U., Flockerzi, V., Freichel, M., The TRPV6 gene, cDNA and protein. Cell Calcium 33 (2003), 509–518, 10.1016/s0143-4160(03)00066-6.
Hofmann, T., Obukhov, A.G., Schaefer, M., Harteneck, C., Gudermann, T., Schultz, G., Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397 (1999), 259–263, 10.1038/16711.
Huang, G.N., Zeng, W., Kim, J.Y., Yuan, J.P., Han, L., Muallem, S., Worley, P.F., STIM1 carboxyl-terminus activates native SOC, I(crac) and TRPC1 channels. Nat. Cell Biol. 8 (2006), 1003–1010, 10.1038/ncb1454.
Jeon, J., Bu, F., Sun, G., Tian, J.B., Ting, S.M., Li, J., Aronowski, J., Birnbaumer, L., Freichel, M., Zhu, M.X., Contribution of TRPC channels in neuronal excitotoxicity associated With neurodegenerative disease and ischemic stroke. Front. Cell Dev. Biol., 8, 2020, 618663, 10.3389/fcell.2020.618663.
Kim, J., Kwak, M., Jeon, J.-P., Myeong, J., Wie, J., Hong, C., Kim, S.-Y., Jeon, J.-H., Kim, H.J., So, I., Isoform- and receptor-specific channel property of canonical transient receptor potential (TRPC)1/4 channels. Pflugers Arch. 466 (2014), 491–504, 10.1007/s00424-013-1332-y.
Kim, S.J., Kim, Y.S., Yuan, J.P., Petralia, R.S., Worley, P.F., Linden, D.J., Activation of the TRPC1 cation channel by metabotropic glutamate receptor mGluR1. Nature 426 (2003), 285–291, 10.1038/nature02162.
Kirtley, P.R., Sooch, G.S., White, F.A., Obukhov, A.G., Transient receptor potential canonical channels in health and disease: A 2020 update. Cells, 10, 2021, 496, 10.3390/cells10030496.
Kise, Y., Kasuya, G., Okamoto, H.H., Yamanouchi, D., Kobayashi, K., Kusakizako, T., Nishizawa, T., Nakajo, K., Nureki, O., Structural basis of gating modulation of Kv4 channel complexes. Nature 599 (2021), 158–164, 10.1038/s41586-021-03935-z.
Kiselyov, K., Mignery, G.A., Zhu, M.X., Muallem, S., The N-terminal domain of the IP3 receptor gates store-operated hTrp3 channels. Mol. Cell 4 (1999), 423–429, 10.1016/s1097-2765(00)80344-5.
Ko, J., Myeong, J., Shin, Y.-C., So, I., Differential PI(4,5)P2 sensitivities of TRPC4, C5 homomeric and TRPC1/4, C1/5 heteromeric channels. Sci. Rep., 9, 2019, 1849, 10.1038/s41598-018-38443-0.
Ko, J., Myeong, J., Yang, D., So, I., Calcium permeability of transient receptor potential canonical (TRPC) 4 channels measured by TRPC4-GCaMP6s. Korean J. Physiol. Pharmacol. 21 (2017), 133–140, 10.4196/kjpp.2017.21.1.133.
Kollewe, A., Chubanov, V., Tseung, F.T., Correia, L., Schmidt, E., Rössig, A., Zierler, S., Haupt, A., Müller, C.S., Bildl, W., et al. The molecular appearance of native TRPM7 channel complexes identified by high-resolution proteomics. eLife, 10, 2021, e68544, 10.7554/eLife.68544.
Korthals, M., Langnaese, K., Smalla, K.H., Kähne, T., Herrera-Molina, R., Handschuh, J., Lehmann, A.C., Mamula, D., Naumann, M., Seidenbecher, C., et al. A complex of Neuroplastin and Plasma Membrane Ca2+ ATPase controls T cell activation. Sci. Rep., 7, 2017, 8358, 10.1038/s41598-017-08519-4.
Lee, K.P., Choi, S., Hong, J.H., Ahuja, M., Graham, S., Ma, R., So, I., Shin, D.M., Muallem, S., Yuan, J.P., Molecular determinants mediating gating of transient receptor potential canonical (TRPC) channels by stromal interaction molecule 1 (STIM1). J. Biol. Chem. 289 (2014), 6372–6382, 10.1074/jbc.M113.546556.
Lee, K.P., Yuan, J.P., So, I., Worley, P.F., Muallem, S., STIM1-dependent and STIM1-independent function of transient receptor potential canonical (TRPC) channels tunes their store-operated mode. J. Biol. Chem. 285 (2010), 38666–38673, 10.1074/jbc.M110.155036.
Li, C., Geng, C., Leung, H.T., Hong, Y.S., Strong, L.L., Schneuwly, S., Pak, W.L., INAF, a protein required for transient receptor potential Ca2+ channel function. Proc. Natl. Acad. Sci. USA 96 (1999), 13474–13479, 10.1073/pnas.96.23.13474.
Li, N., Wu, J.X., Ding, D., Cheng, J., Gao, N., Chen, L., Structure of a pancreatic ATP-sensitive potassium channel. Cell 168 (2017), 101–110.e10, 10.1016/j.cell.2016.12.028.
Lintschinger, B., Balzer-Geldsetzer, M., Baskaran, T., Graier, W.F., Romanin, C., Zhu, M.X., Groschner, K., Coassembly of Trp1 and Trp3 proteins generates diacylglycerol- and Ca2+-sensitive cation channels. J. Biol. Chem. 275 (2000), 27799–27805, 10.1074/jbc.M002705200.
Miller, M., Shi, J., Zhu, Y., Kustov, M., Tian, J.B., Stevens, A., Wu, M., Xu, J., Long, S., Yang, P., et al. Identification of ML204, a novel potent antagonist that selectively modulates native TRPC4/C5 ion channels. J. Biol. Chem. 286 (2011), 33436–33446, 10.1074/jbc.M111.274167.
Montell, C., The TRP superfamily of cation channels. Sci. STKE, 2005, 2005, re3, 10.1126/stke.2722005re3.
Müller, C.S., Haupt, A., Bildl, W., Schindler, J., Knaus, H.G., Meissner, M., Rammner, B., Striessnig, J., Flockerzi, V., Fakler, B., Schulte, U., Quantitative proteomics of the Cav2 channel nano-environments in the mammalian brain. Proc. Natl. Acad. Sci. USA 107 (2010), 14950–14957, 10.1073/pnas.1005940107.
Myeong, J., Ko, J., Hong, C., Yang, D., Lee, K.P., Jeon, J.-H., So, I., The interaction domains of transient receptor potential canonical (TRPC)1/4 and TRPC1/5 heteromultimeric channels. Biochem. Biophys. Res. Commun. 474 (2016), 476–481, 10.1016/j.bbrc.2016.04.138.
Philipp, S., Trost, C., Warnat, J., Rautmann, J., Himmerkus, N., Schroth, G., Kretz, O., Nastainczyk, W., Cavalie, A., Hoth, M., Flockerzi, V., TRP4 (CCE1) protein is part of native calcium release-activated Ca2+-like channels in adrenal cells. J. Biol. Chem. 275 (2000), 23965–23972, 10.1074/jbc.M003408200.
Riccio, A., Medhurst, A.D., Mattei, C., Kelsell, R.E., Calver, A.R., Randall, A.D., Benham, C.D., Pangalos, M.N., mRNA distribution analysis of human TRPC family in CNS and peripheral tissues. Brain Res. Mol. Brain Res. 109 (2002), 95–104, 10.1016/s0169-328x(02)00527-2.
Rosenzweig, M., Kang, K., Garrity, P.A., Distinct TRP channels are required for warm and cool avoidance in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 105 (2008), 14668–14673, 10.1073/pnas.0805041105.
Schmidt, N., Kollewe, A., Constantin, C.E., Henrich, S., Ritzau-Jost, A., Bildl, W., Saalbach, A., Hallermann, S., Kulik, A., Fakler, B., Schulte, U., Neuroplastin and basigin are essential auxiliary subunits of plasma membrane Ca2+-ATPases and key regulators of Ca2+ clearance. Neuron 96 (2017), 827–838.e9, 10.1016/j.neuron.2017.09.038.
Schneider, C.A., Rasband, W.S., Eliceiri, K.W., NIH Image to ImageJ: 25 years of Image Analysis. Nat. Methods 9 (2012), 671–675, 10.1038/nmeth.2089.
Schwarz, Y., Oleinikov, K., Schindeldecker, B., Wyatt, A., Weißgerber, P., Flockerzi, V., Boehm, U., Freichel, M., Bruns, D., TRPC channels regulate Ca2+-signaling and short-term plasticity of fast glutamatergic synapses. PLoS Biol., 17, 2019, e3000445, 10.1371/journal.pbio.3000445.
Schwenk, J., Boudkkazi, S., Kocylowski, M.K., Brechet, A., Zolles, G., Bus, T., Costa, K., Kollewe, A., Jordan, J., Bank, J., et al. An ER assembly line of AMPA-receptors controls excitatory neurotransmission and its plasticity. Neuron 104 (2019), 680–692.e9, 10.1016/j.neuron.2019.08.033.
Schwenk, J., Harmel, N., Brechet, A., Zolles, G., Berkefeld, H., Müller, C.S., Bildl, W., Baehrens, D., Hüber, B., Kulik, A., et al. High-resolution proteomics unravel architecture and molecular diversity of native AMPA receptor complexes. Neuron 74 (2012), 621–633, 10.1016/j.neuron.2012.03.034.
Schwenk, J., Harmel, N., Zolles, G., Bildl, W., Kulik, A., Heimrich, B., Chisaka, O., Jonas, P., Schulte, U., Fakler, B., Klöcker, N., Functional proteomics identify cornichon proteins as auxiliary subunits of AMPA receptors. Science 323 (2009), 1313–1319, 10.1126/science.1167852.
Schwenk, J., Metz, M., Zolles, G., Turecek, R., Fritzius, T., Bildl, W., Tarusawa, E., Kulik, A., Unger, A., Ivankova, K., et al. Native GABAB receptors are heteromultimers with a family of auxiliary subunits. Nature 465 (2010), 231–235, 10.1038/nature08964.
Schwenk, J., Pérez-Garci, E., Schneider, A., Kollewe, A., Gauthier-Kemper, A., Fritzius, T., Raveh, A., Dinamarca, M.C., Hanuschkin, A., Bildl, W., et al. Modular composition and dynamics of native GABAB receptors identified by high-resolution proteomics. Nat. Neurosci. 19 (2016), 233–242, 10.1038/nn.4198.
Selvaraj, S., Sun, Y., Singh, B.B., TRPC channels and their implication in neurological diseases. CNS Neurol. Disord. Drug Targets 9 (2010), 94–104, 10.2174/187152710790966650.
Sierra-Valdez, F., Azumaya, C.M., Romero, L.O., Nakagawa, T., Cordero-Morales, J.F., Structure-function analyses of the ion channel TRPC3 reveal that its cytoplasmic domain allosterically modulates channel gating. J. Biol. Chem. 293 (2018), 16102–16114, 10.1074/jbc.RA118.005066.
Song, K., Wei, M., Guo, W., Quan, L., Kang, Y., Wu, J.X., Chen, L., Structural basis for human TRPC5 channel inhibition by two distinct inhibitors. eLife, 10, 2021, e63429, 10.7554/eLife.63429.
Storch, U., Forst, A.-L., Philipp, M., Gudermann, T., Mederos y Schnitzler, M., Transient receptor potential channel 1 (TRPC1) reduces calcium permeability in heteromeric channel complexes. J. Biol. Chem. 287 (2012), 3530–3540, 10.1074/jbc.M111.283218.
Strübing, C., Krapivinsky, G., Krapivinsky, L., Clapham, D.E., TRPC1 and TRPC5 form a novel cation channel in mammalian brain. Neuron 29 (2001), 645–655, 10.1016/s0896-6273(01)00240-9.
Tai, C., Hines, D.J., Choi, H.B., MacVicar, B.A., Plasma membrane insertion of TRPC5 channels contributes to the cholinergic plateau potential in hippocampal CA1 pyramidal neurons. Hippocampus 21 (2011), 958–967, 10.1002/hipo.20807.
Tang, J., Lin, Y., Zhang, Z., Tikunova, S., Birnbaumer, L., Zhu, M.X., Identification of common binding sites for calmodulin and inositol 1,4,5-trisphosphate receptors on the carboxyl termini of trp channels. J. Biol. Chem. 276 (2001), 21303–21310, 10.1074/jbc.M102316200.
Tang, Q., Guo, W., Zheng, L., Wu, J.X., Liu, M., Zhou, X., Zhang, X., Chen, L., Structure of the receptor-activated human TRPC6 and TRPC3 ion channels. Cell Res. 28 (2018), 746–755, 10.1038/s41422-018-0038-2.
Tsvilovskyy, V.V., Zholos, A.V., Aberle, T., Philipp, S.E., Dietrich, A., Zhu, M.X., Birnbaumer, L., Freichel, M., Flockerzi, V., Deletion of TRPC4 and TRPC6 in mice impairs smooth muscle contraction and intestinal motility in vivo. Gastroenterology 137 (2009), 1415–1424, 10.1053/j.gastro.2009.06.046.
Turecek, R., Schwenk, J., Fritzius, T., Ivankova, K., Zolles, G., Adelfinger, L., Jacquier, V., Besseyrias, V., Gassmann, M., Schulte, U., et al. Auxiliary GABAB receptor subunits uncouple G protein betagamma subunits from effector channels to induce desensitization. Neuron 82 (2014), 1032–1044, 10.1016/j.neuron.2014.04.015.
Venkatachalam, K., Zheng, F., Gill, D.L., Regulation of canonical transient receptor potential (TRPC) channel function by diacylglycerol and protein kinase C. J. Biol. Chem. 278 (2003), 29031–29040, 10.1074/jbc.M302751200.
Vinayagam, D., Mager, T., Apelbaum, A., Bothe, A., Merino, F., Hofnagel, O., Gatsogiannis, C., Raunser, S., Electron cryo-microscopy structure of the canonical TRPC4 ion channel. eLife, 7, 2018, e36615, 10.7554/eLife.36615.
Vinayagam, D., Quentin, D., Yu-Strzelczyk, J., Sitsel, O., Merino, F., Stabrin, M., Hofnagel, O., Yu, M., Ledeboer, M.W., Nagel, G., et al. Structural basis of TRPC4 regulation by calmodulin and pharmacological agents. eLife, 9, 2020, e60603, 10.7554/eLife.60603.
Wang, Y., Bu, J., Shen, H., Li, H., Wang, Z., Chen, G., Targeting transient receptor potential canonical channels for diseases of the nervous system. Curr. Drug Targets 18 (2017), 1460–1465, 10.2174/1389450117666151209120007.
Wen, S., Götze, I.N., Mai, O., Schauer, C., Leinders-Zufall, T., Boehm, U., Genetic identification of GnRH receptor neurons: a new model for studying neural circuits underlying reproductive physiology in the mouse brain. Endocrinology 152 (2011), 1515–1526, 10.1210/en.2010-1208.
Wettschureck, N., Offermanns, S., Mammalian G proteins and their cell type specific functions. Physiol. Rev. 85 (2005), 1159–1204, 10.1152/physrev.00003.2005.
Wright, D.J., Simmons, K.J., Johnson, R.M., Beech, D.J., Muench, S.P., Bon, R.S., Human TRPC5 structures reveal interaction of a xanthine-based TRPC1/4/5 inhibitor with a conserved lipid binding site. Commun. Biol., 3, 2020, 704, 10.1038/s42003-020-01437-8.
Wyatt, A., Wartenberg, P., Candlish, M., Krasteva-Christ, G., Flockerzi, V., Boehm, U., Genetic strategies to analyze primary TRP channel-expressing cells in mice. Cell Calcium 67 (2017), 91–104, 10.1016/j.ceca.2017.05.009.
Xue, T., Do, M.T., Riccio, A., Jiang, Z., Hsieh, J., Wang, H.C., Merbs, S.L., Welsbie, D.S., Yoshioka, T., Weissgerber, P., et al. Melanopsin signalling in mammalian iris and retina. Nature 479 (2011), 67–73, 10.1038/nature10567.
Yuan, J.P., Kim, M.S., Zeng, W., Shin, D.M., Huang, G., Worley, P.F., Muallem, S., TRPC channels as STIM1-regulated SOCs. Channels (Austin) 3 (2009), 221–225, 10.4161/chan.3.4.9198.
Zhang, Z., Tang, J., Tikunova, S., Johnson, J.D., Chen, Z., Qin, N., Dietrich, A., Stefani, E., Birnbaumer, L., Zhu, M.X., Activation of Trp3 by inositol 1,4,5-trisphosphate receptors through displacement of inhibitory calmodulin from a common binding domain. Proc. Natl. Acad. Sci. USA 98 (2001), 3168–3173, 10.1073/pnas.051632698.
Zhao, C., MacKinnon, R., Molecular structure of an open human KATP channel. Proc. Natl. Acad. Sci. USA, 118, 2021, 10.1073/pnas.2112267118 e2112267118.
Zheng, F., Phelan, K.D., The role of canonical transient receptor potential channels in seizure and excitotoxicity. Cells 3 (2014), 288–303, 10.3390/cells3020288.