Heat and momentum exchanges at the Southern Ocean surface are crucial for the Earth’s Climate, but the importance of the small-scale spatial variability of these surface fluxes is poorly understood. Here, we explore how small-scale heterogeneities of the surface conditions due in particular to ocean eddies affect the atmosphere–sea ice–ocean interactions off Adélie Land, in East Antarctica. To this end, we use a high-resolution regional atmosphere–sea ice–ocean coupled model based on the NEMO-LIM and MAR models. We explore how the atmosphere responds to small-scale heterogeneity of the ocean or sea ice surface conditions, how eddies affect the sea ice and atmosphere, and how the eddy-driven surface fluxes impact the heat, freshwater, and momentum budget of the ocean. The atmosphere is found to be more sensitive to small-scale surface temperature gradients above the ice-covered than above the ice-free ocean. Sea ice concentration is found to be weaker above anticyclonic than cyclonic eddies due to increased sea ice melting or freezing (0.8 cm/day) partly compensated by sea ice convergence or divergence. The imprint of ice-free eddies on the atmosphere is weak, but in the presence of sea ice, air warming (+ 0.3 ∘C) and wind intensification (+ 0.1 m/s) are found above anticyclonic eddies, while cyclonic eddies have the opposite effects. Removing the interactions of eddies with the sea ice or atmosphere does not affect the total sea ice volume, but increases the ocean kinetic energy by 8% and weakens northward advection of sea ice, leading to a 15% decrease in freshwater flux north of 62.5 ∘S and weaker ocean restratification.
Research Center/Unit :
SPHERES - ULiège
Disciplines :
Earth sciences & physical geography
Author, co-author :
Huot, P.-V. ; Earth and Life Institute, George Lemaitre Centre for Earth and Climate Research, UCLouvain, Louvain-la-Neuve, Belgium ; Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
Kittel, Christoph ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie
Fichefet, T.; Earth and Life Institute, George Lemaitre Centre for Earth and Climate Research, UCLouvain, Louvain-la-Neuve, Belgium
Jourdain, N.C.; Universitée Grenoble Alpes, CNRS/IRD/G-INP, IGE, Grenoble, France
Fettweis, Xavier ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie
Language :
English
Title :
Efects of ocean mesoscale eddies on atmosphere–sea ice–ocean interactions of Adélie Land, East Antarctica
Publication date :
January 2022
Journal title :
Climate Dynamics
ISSN :
0930-7575
eISSN :
1432-0894
Publisher :
Springer, Germany
Volume :
59
Issue :
1-2
Pages :
41 - 60
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif
European Projects :
H2020 - 101003826 - CRiceS - Climate relevant interactions and feedbacks: the key role of sea ice and snow in the polar and global climate system
Name of the research project :
Air–Ice–Ocean Interactions in Antarctica ; PARAMOUR; CRiceS
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique EU - European Union
Funding text :
This research was conducted within the F.R.S.-FNRS PDR
T.0002.16 “Air–Ice–Ocean Interactions in Antarctica” and the PARAMOUR
project, funded by the FWO and F.R.S.-FNRS under the
Excellence of Science (EOS) program (Grant EOS O0100718F). N.
Jourdain’s contribution was supported by the CRiceS project, which
received funding from the European Union’s Horizon H2020 research
and innovation program under grant agreement No 101003826.
Abernathey R, Haller G (2018) Transport by Lagrangian vortices in the Eastern Pacific. J Phys Oceanogr 48(3):667–685. 10.1175/JPO-D-17-0102.1 DOI: 10.1175/JPO-D-17-0102.1
Abernathey RP, Cerovecki I, Holland PR, Newsom E, Mazloff M, Talley LD (2016) Water-mass transformation by sea ice in the upper branch of the Southern Ocean overturning. Nat Geosci 9(8):596–601
Agosta C, Amory C, Kittel C, Orsi A, Favier V, Gallée H, van den Broeke MR, Lenaerts JTM, van Wessem JM, van de Berg WJ, Fettweis X (2019) Estimation of the Antarctic surface mass balance using the regional climate model MAR (1979–2015) and identification of dominant processes. Cryosphere 13(1):281–296. 10.5194/tc-13-281-2019 DOI: 10.5194/tc-13-281-2019
Allison LC, Johnson HL, Marshall DP, Munday DR (2010) Where do winds drive the Antarctic Circumpolar Current? Geophys Res Lett. 10.1029/2010GL043355 DOI: 10.1029/2010GL043355
Amores A, Jordà G, Arsouze T, Sommer JL (2018) Up to what extent can we characterize ocean eddies using present-day gridded altimetric products? J Geophys Res Oceans 123(10):7220–7236. 10.1029/2018JC014140 DOI: 10.1029/2018JC014140
Amory C, Trouvilliez A, Gallée H, Favier V, Naaim-Bouvet F, Genthon C, Agosta C, Piard L, Bellot H (2015) Comparison between observed and simulated aeolian snow mass fluxes in Adélie Land, East Antarctica. Cryosphere 9:1373–1383
Andreas EL, Decosmo J (2002) The signature of sea spray in the Hexos turbulent heat flux data. Boundary-Layer Meteorol 103(2):303–333. 10.1023/A:1014564513650 DOI: 10.1023/A:1014564513650
Bailey DA, Lynch AH (2000) Development of an Antarctic regional climate system model. Part I: sea ice and large-scale circulation. J Clim 13(8):1337–1350
Ballarotta M, Ubelmann C, Pujol MI, Taburet G, Fournier F, Legeais JF, Faugere Y, Delepoulle A, Chelton D, Dibarboure G, Picot N (2019) On the resolutions of ocean altimetry maps. Ocean Sci. 10.5194/os-2018-156 DOI: 10.5194/os-2018-156
Bintanja R, Van Oldenborgh G, Katsman C (2015) The effect of increased fresh water from Antarctic ice shelves on future trends in Antarctic sea ice. Ann Glaciol 56(69):120–126
Bougeault P, Lacarrere P (1989) Parameterization of orography-induced turbulence in a Mesobeta-scale model. Mon Weather Rev 117(8):1872–1890
Boutin G, Ardhuin F, Dumont D, Sévigny C, Girard-Ardhuin F, Accensi M (2018) Floe size effect on wave-ice interactions: possible effects, implementation in wave model, and evaluation. J Geophys Res Oceans 123(7):4779–4805
Bromwich DH, Cassano JJ, Klein T, Heinemann G, Hines KM, Steffen K, Box JE (2001) Mesoscale modeling of katabatic winds over Greenland with the Polar MM5. Mon Weather Rev 129(9):2290–2309
Brun E, David P, Sudul M, Brunot G (1992) A numerical model to simulate snow-cover stratigraphy for operational avalanche forecasting. J Glaciol 38(128):13–22
Carrère L, Lyard F, Cancet M, Guillot A, Roblou L (2012) A new global tidal model taking taking advantage of nearly 20 years of altimetry. In: Proceedings of meeting 20 years of altimetry
Cassano JJ, Box JE, Bromwich DH, Li L, Steffen K (2001) Evaluation of polar MM5 simulations of Greenland’s atmospheric circulation. J Geophys Res Atmos 106(D24):33867–33889. 10.1029/2001JD900044 DOI: 10.1029/2001JD900044
Cassianides A, Lique C, Korosov A (2021) Ocean eddy signature on SAR-derived sea ice drift and vorticity. Geophys Res Lett 48(6):e2020GL092066. 10.1029/2020GL092066
Chanut J, Barnier B, Large W, Debreu L, Penduff T, Molines JM, Mathiot P (2008) Mesoscale eddies in the Labrador sea and their contribution to convection and restratification. J Phys Oceanogr 38(8):1617–1643. 10.1175/2008JPO3485.1 DOI: 10.1175/2008JPO3485.1
Chelton DB, deSzoeke RA, Schlax MG, Naggar KE, Siwertz N (1998) Geographical variability of the first baroclinic Rossby radius of deformation. J Phys Oceanogr 28(3):433–460
Chelton DB, Schlax MG, Samelson RM (2007) Summertime coupling between sea surface temperature and wind stress in the California Current System. J Phys Oceanogr 37(3):495–517
Craig A, Valcke S, Coquart L (2017) Development and performance of a new version of the OASIS coupler, OASIS3-MCT_3.0. Geosci Model Dev 10(9):3297–3308. 10.5194/gmd-10-3297-2017 DOI: 10.5194/gmd-10-3297-2017
De Lavergne C, Palter JB, Galbraith ED, Bernardello R, Marinov I (2014) Cessation of deep convection in the open Southern Ocean under anthropogenic climate change. Nat Clim Change 4(4):278
De Ridder K, Gallée H (1998) Land surface-induced regional climate change in southern Israel. J Appl Meteorol 37(11):1470–1485
Donat-Magnin M, Jourdain NC, Gallée H, Amory C, Kittel C, Fettweis X, Wille JD, Favier V, Drira A, Agosta C (2020) Interannual variability of summer surface mass balance and surface melting in the Amundsen sector, West Antarctica. Cryosphere 14:229–249
Donlon CJ, Martin M, Stark J, Roberts-Jones J, Fiedler E, Wimmer W (2012) The operational sea surface temperature and sea ice analysis (OSTIA) system. Remote Sens Environ 116:140–158
Du Plessis M, Swart S, Ansorge IJ, Mahadevan A, Thompson AF (2019) Southern ocean seasonal restratification delayed by submesoscale wind-front interactions. J Phys Oceanogr 49(4):1035–1053
Duynkerke PG (1988) Application of the E- ϵ turbulence closure model to the neutral and stable atmospheric boundary layer. J Atmos Sci 45(5):865–880
Faghmous JH, Frenger I, Yao Y, Warmka R, Lindell A, Kumar V (2015) A daily global mesoscale ocean eddy dataset from satellite altimetry. Sci Data. 10.1038/sdata.2015.28 DOI: 10.1038/sdata.2015.28
Ferrari R, Wunsch C (2010) The distribution of eddy kinetic and potential energies in the global ocean. Tellus A Dyn Meteorol Oceanogr 62(2):92–108
Foussard A, Lapeyre G, Plougonven R (2019) Storm track response to oceanic eddies in idealized atmospheric simulations. J Clim 32(2):445–463
Frenger I, Gruber N, Knutti R, Münnich M (2013) Imprint of Southern Ocean eddies on winds, clouds and rainfall. Nat Geosci 6(8):608–612
Frenger I, Münnich M, Gruber N, Knutti R (2015) Southern Ocean eddy phenomenology. J Geophys Res Oceans 120(11):7413–7449. 10.1002/2015JC011047 DOI: 10.1002/2015JC011047
Gallée H, Schayes G (1994) Development of a three-dimensional Meso- γ primitive equation model: katabatic winds simulation in the area of Terra Nova Bay, Antarctica. Mon Weather Rev 122(4):671–685
Garcia D (2010) Robust smoothing of gridded data in one and higher dimensions with missing values. Comput Stat Data Anal 54(4):1167–1178. 10.1016/j.csda.2009.09.020 DOI: 10.1016/j.csda.2009.09.020
Gaspar P, Grégoris Y, Lefevre JM (1990) A simple eddy kinetic energy model for simulations of the oceanic vertical mixing: tests at station Papa and long-term upper ocean study site. J Geophys Res Oceans 95(C9):16179–16193
Gryschka M, Drüe C, Etling D, Raasch S (2008) On the influence of sea-ice inhomogeneities onto roll convection in cold-air outbreaks. Geophys Res Lett. 10.1029/2008GL035845 DOI: 10.1029/2008GL035845
Gupta M, Marshall J, Song H, Campin J, Meneghello G (2020) Sea–ice melt driven by ice–ocean stresses on the mesoscale. J Geophys Res Oceans. 10.1029/2020JC016404 DOI: 10.1029/2020JC016404
Hallberg R (2013) Using a resolution function to regulate parameterizations of oceanic mesoscale eddy effects. Ocean Model 72:92–103
Haller G (2016) Dynamic rotation and stretch tensors from a dynamic polar decomposition. J Mech Phys Solids 86:70–93. 10.1016/j.jmps.2015.10.002 DOI: 10.1016/j.jmps.2015.10.002
Hausmann U, McGillicuddy DJ Jr, Marshall J (2017) Observed mesoscale eddy signatures in Southern Ocean surface mixed-layer depth. J Geophys Res Oceans 122(1):617–635
Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-Sabater J, Nicolas J, Peubey C, Radu R, Schepers D et al (2020) The ERA5 global reanalysis. Q J R Meteorol Soc 146(730):1999–2049
Hogg AM (2010) An Antarctic circumpolar current driven by surface buoyancy forcing. Geophys Res Lett. 10.1029/2010GL044777 DOI: 10.1029/2010GL044777
Horvat C, Tziperman E, Campin JM (2016) Interaction of sea ice floe size, ocean eddies, and sea ice melting. Geophys Res Lett 43(15):8083–8090
Huot PV, Fichefet T, Jourdain NC, Mathiot P, Rousset C, Kittel C, Fettweis X (2021) Influence of ocean tides and ice shelves on ocean-ice interactions and dense shelf water formation in the D’Urville Sea, Antarctica. Ocean Model 162:101794. 10.1016/j.ocemod.2021.101794 DOI: 10.1016/j.ocemod.2021.101794
Huot PV, Kittel C, Fichefet T, Jourdain NC, Sterlin J, Fettweis X (2021) Effects of the atmospheric forcing resolution on simulated sea ice and polynyas off Adélie Land, East Antarctica. Ocean Model 168:101901. 10.1016/j.ocemod.2021.101901 DOI: 10.1016/j.ocemod.2021.101901
Jeong H, Asay-Davis XS, Turner AK, Comeau DS, Price SF, Abernathey RP, Veneziani M, Petersen MR, Hoffman MJ, Mazloff MR et al (2020) Impacts of ice-shelf melting on Water-mass transformation in the Southern Ocean from E3SM simulations. J Clim 33(13):5787–5807
Jourdain NC, Mathiot P, Gallée H, Barnier B (2011) Influence of coupling on atmosphere, sea ice and ocean regional models in the Ross Sea sector, Antarctica. Clim Dyn 36(7–8):1523–1543
Jourdain NC, Molines JM, Le Sommer J, Mathiot P, Chanut J, de Lavergne C, Madec G (2019) Simulating or prescribing the influence of tides on the Amundsen Sea ice shelves. Ocean Model 133:44–55
Kittel C, Amory C, Agosta C, Delhasse A, Doutreloup S, Huot PV, Wyard C, Fichefet T, Fettweis X (2018) Sensitivity of the current Antarctic surface mass balance to sea surface conditions using MAR. Cryosphere 12:3827–3839
Kittel C, Amory C, Agosta C, Jourdain NC, Hofer S, Delhasse A, Doutreloup S, Huot PV, Lang C, Fichefet T (2021) Diverging future surface mass balance between the Antarctic ice shelves and grounded ice sheet. Cryosphere 15(3):1215–1236
Kozlov IE, Artamonova AV, Manucharyan GE, Kubryakov AA (2019) Eddies in the Western Arctic Ocean from spaceborne SAR observations over open ocean and marginal ice zones. J Geophys Res Oceans 124(9):6601–6616. 10.1029/2019JC015113 DOI: 10.1029/2019JC015113
LaCasce JH, Groeskamp S (2020) Baroclinic modes over rough bathymetry and the surface deformation radius. J Phys Oceanogr 50(10):2835–2847. 10.1175/JPO-D-20-0055.1 DOI: 10.1175/JPO-D-20-0055.1
Large WG, Yeager SG (2004) Diurnal to decadal global forcing for ocean and sea-ice models: the data sets and flux climatologies. NCAR Tech Note
Lavergne T, Sørensen AM, Kern S, Tonboe R, Notz D, Aaboe S, Bell L, Dybkjæer G, Eastwood S, Gabarro C et al (2019) Version 2 of the EUMETSAT OSI SAF and ESA CCI sea–ice concentration climate data records. Cryosphere 13(1):49–78
Lazar A, Madec G, Delecluse P (1999) The deep interior downwelling, the veronis effect, and mesoscale tracer transport parameterizations in an OGCM. J Phys Oceanogr 29(11):2945–2961
Le Bars D, Viebahn JP, Dijkstra HA (2016) A Southern Ocean mode of multidecadal variability. Geophys Res Lett 43(5):2102–2110. 10.1002/2016GL068177 DOI: 10.1002/2016GL068177
Locarnini R, Mishonov A, Baranova O, Boyer T, Zweng M, Garcia H, Reagan J, Seidov D, Weathers K, Paver C, Smolyar I (2018) World Ocean Atlas 2018. Temperature. NOAA Atlas NESDIS 81 Edition, A. Mishonov, vol 1
Lüpkes C, Gryanik VM, Hartmann J, Andreas EL (2012) A parametrization, based on sea ice morphology, of the neutral atmospheric drag coefficients for weather prediction and climate models. J Geophys Res Atmos. 10.1029/2012jd017630 DOI: 10.1029/2012jd017630
Madec G (2016) NEMO ocean engine. Note du Pôle de modélisation, Institut Pierre-Simon Laplace (IPSL), France, No 27, ISSN No 1288-1619
Manucharyan GE, Thompson AF (2017) Submesoscale Sea Ice–Ocean Interactions in marginal ice zones. J Geophys Res Oceans 122(12):9455–9475. 10.1002/2017jc012895 DOI: 10.1002/2017jc012895
Maraldi C, Chanut J, Levier B, Ayoub N, De Mey P, Reffray G, Lyard F, Cailleau S, Drévillon M, Fanjul E et al (2013) NEMO on the shelf: assessment of the Iberia-Biscay-Ireland configuration. Ocean Sci 9(4):745–71
Marbaix P, Gallée H, Brasseur O, Ypersele JPV (2003) Lateral boundary conditions in regional climate models: a detailed study of the relaxation procedure. Mon Weather Rev 131(3):461–479
Marshall J, Radko T (2003) Residual-mean solutions for the Antarctic circumpolar current and its associated overturning circulation. J Phys Oceanogr 33(11):2341–2354
Marshall J, Speer K (2012) Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat Geosci 5(3):171–180. 10.1038/ngeo1391 DOI: 10.1038/ngeo1391
Martinson DG (2012) Antarctic circumpolar current’s role in the Antarctic ice system: an overview. Palaeogeogr Palaeoclimatol Palaeoecol 335–336:71–74. 10.1016/j.palaeo.2011.04.007 DOI: 10.1016/j.palaeo.2011.04.007
McWilliams JC (2008) The nature and consequences of oceanic eddies. Ocean Model Eddying Regime 177:5–15
McWilliams JC (2016) Submesoscale currents in the ocean. Proc R Soc A Math Phys Eng Sci 472(2189):20160117. 10.1098/rspa.2016.0117 DOI: 10.1098/rspa.2016.0117
Meneghello G, Marshall J, Lique C, Isachsen PE, Doddridge E, Campin JM, Regan H, Talandier C (2020) Genesis and decay of mesoscale baroclinic eddies in the seasonally ice-covered interior arctic ocean. J Phys Oceanogr 51(1):115–129. 10.1175/JPO-D-20-0054.1 DOI: 10.1175/JPO-D-20-0054.1
Moreau S, Penna AD, Llort J, Patel R, Langlais C, Boyd PW, Matear RJ, Phillips HE, Trull TW, Tilbrook B, Lenton A, Strutton PG (2017) Eddy-induced carbon transport across the Antarctic circumpolar current. Glob Biogeochem Cycles 31(9):1368–1386. 10.1002/2017GB005669 DOI: 10.1002/2017GB005669
O’Neill LW, Chelton DB, Esbensen SK, Wentz FJ (2005) High-resolution satellite measurements of the atmospheric boundary layer response to SST variations along the agulhas return current. J Clim 18(14):2706–2723. 10.1175/JCLI3415.1 DOI: 10.1175/JCLI3415.1
Orsi A, Johnson G, Bullister J (1999) Circulation, mixing, and production of Antarctic bottom water. Prog Oceanogr 43(1):55–109
Renault L, Molemaker MJ, McWilliams JC, Shchepetkin AF, Lemarié F, Chelton D, Illig S, Hall A (2016) Modulation of wind work by oceanic current interaction with the atmosphere. J Phys Oceanogr 46(6):1685–1704. 10.1175/jpo-d-15-0232.1 DOI: 10.1175/jpo-d-15-0232.1
Renault L, McWilliams JC, Masson S (2017) Satellite observations of imprint of oceanic current on wind stress by air–sea coupling. Sci Rep 7(1):17747. 10.1038/s41598-017-17939-1 DOI: 10.1038/s41598-017-17939-1
Renault L, Masson S, Oerder V, Jullien S, Colas F (2019) Disentangling the mesoscale ocean–atmosphere interactions. J Geophys Res Oceans 124(3):2164–2178. 10.1029/2018JC014628 DOI: 10.1029/2018JC014628
Rignot E, Mouginot J, Scheuchl B, van den Broeke M, van Wessem MJ, Morlighem M (2019) Four decades of Antarctic Ice Sheet mass balance from 1979–2017. Proc Natl Acad Sci 116(4):1095–1103. 10.1073/pnas.1812883116 DOI: 10.1073/pnas.1812883116
Rousset C, Vancoppenolle M, Madec G, Fichefet T, Flavoni S, Barthélemy A, Benshila R, Chanut J, Levy C, Masson S, Vivier F (2015) The Louvain-La-Neuve sea ice model LIM3.6: global and regional capabilities. Geosci Model Dev 8(10):2991–3005. 10.5194/gmd-8-2991-2015 DOI: 10.5194/gmd-8-2991-2015
Shine KP, Henderson-Sellers A (1985) The sensitivity of a thermodynamic sea ice model to changes in surface albedo parameterization. J Geophys Res Atmos 90(D1):2243–2250. 10.1029/JD090iD01p02243 DOI: 10.1029/JD090iD01p02243
Small RJ, deSzoeke SP, Xie SP, O’Neill L, Seo H, Song Q, Cornillon P, Spall M, Minobe S (2008) Air–sea interaction over ocean fronts and eddies. Dyn Atmos Oceans 45(3):274–319. 10.1016/j.dynatmoce.2008.01.001 DOI: 10.1016/j.dynatmoce.2008.01.001
Small RJ, Msadek R, Kwon YO, Booth JF, Zarzycki C (2019) Atmosphere surface storm track response to resolved ocean mesoscale in two sets of global climate model experiments. Clim Dyn 52(3):2067–2089
Sokolov S, Rintoul SR (2009) Circumpolar structure and distribution of the Antarctic circumpolar current fronts: 1 mean circumpolar paths. J Geophys Res Oceans 114(C11):1
Song Q, Chelton DB, Esbensen SK, Thum N, O’Neill LW (2009) Coupling between Sea surface temperature and low-level winds in mesoscale numerical models. J Clim 22(1):146–164. 10.1175/2008JCLI2488.1 DOI: 10.1175/2008JCLI2488.1
Song H, Marshall J, McGillicuddy DJ, Seo H (2020) Impact of current-wind interaction on vertical processes in the Southern Ocean. J Geophys Res Oceans 125(4):e2020JC016046. 10.1029/2020JC016046
Soufflet Y, Marchesiello P, Lemarié F, Jouanno J, Capet X, Debreu L, Benshila R (2016) On effective resolution in ocean models. Ocean Model 98:36–50. 10.1016/j.ocemod.2015.12.004 DOI: 10.1016/j.ocemod.2015.12.004
Souza JMAC, de Boyer MC, Le Traon PY (2011) Comparison between three implementations of automatic identification algorithms for the quantification and characterization of mesoscale eddies in the South Atlantic Ocean. Ocean Sci 7(3):317–334. 10.5194/os-7-317-2011 DOI: 10.5194/os-7-317-2011
Stewart AL, Klocker A, Menemenlis D (2018) Circum-Antarctic shoreward heat transport derived from an eddy-and tide-resolving simulation. Geophys Res Lett 45(2):834–845
Tarshish N, Abernathey R, Zhang C, Dufour CO, Frenger I, Griffies SM (2018) Identifying Lagrangian coherent vortices in a mesoscale ocean model. Ocean Model 130:15–28. 10.1016/j.ocemod.2018.07.001 DOI: 10.1016/j.ocemod.2018.07.001
Van Achter G, Fichefet T, Goosse H, Pelletier C, Huot PV, Sterlin J, Fraser AD, Parter-Smith R, Lemieux JF, Haubner K (2021) Modelling landfast sea ice and its influence on ocean–ice interactions in the area of the Totten Glacier, East Antarctica. Ocean Model 168:101901
van Lipzig NP, van Meijgaard E, Oerlemans J (2002) Temperature sensitivity of the Antarctic surface mass balance in a regional atmospheric climate model. J Clim 15(19):2758–2774
Vancoppenolle M, Fichefet T, Goosse H, Bouillon S, Madec G, Maqueda MAM (2009) Simulating the mass balance and salinity of Arctic and Antarctic sea ice. 1. Model description and validation. Ocean Model 27(1–2):33–53. 10.1016/j.ocemod.2008.10.005 DOI: 10.1016/j.ocemod.2008.10.005
Villas Bôas AB, Sato OT, Chaigneau A, Castelão GP (2015) The signature of mesoscale eddies on the air–sea turbulent heat fluxes in the South Atlantic Ocean. Geophys Res Lett 42(6):1856–1862
Walin G (1982) On the relation between sea-surface heat flow and thermal circulation in the ocean. Tellus 34(2):187–195
Wang Y (2001) An explicit simulation of tropical cyclones with a triply nested movable mesh primitive equation model: TCM3. Part I: Model description and control experiment. Mon Weather Rev 129(6):1370–1394
Wang G, Garcia D, Liu Y, de Jeu R, Johannes Dolman A (2012) A three-dimensional gap filling method for large geophysical datasets: application to global satellite soil moisture observations. Environ Model Softw 30:139–142. 10.1016/j.envsoft.2011.10.015 DOI: 10.1016/j.envsoft.2011.10.015
Williams S, Petersen M, Bremer PT, Hecht M, Pascucci V, Ahrens J, Hlawitschka M, Hamann B (2011) Adaptive extraction and quantification of geophysical vortices. IEEE Trans Vis Comput Graph 17(12):2088–2095. 10.1109/TVCG.2011.162 DOI: 10.1109/TVCG.2011.162
Zweng M, Reagan J, Seidov D, Boyer T, Locarnini R, Garcia H, Mishonov A, Baranova O, Weathers K, Paver C, Smolyar I (2018) World Ocean Atlas 2018. In: Mishonov A (eds) vol 2. NOAA Atlas NESDIS 82, Salinity