altimetry; artificial intelligence (AI); CryoSat; cryosphere; Greenland; IceBridge; ICESat-2; interferometry; SARIn; swath; Altimetry; Artificial intelligence; Cryosat; Cryosphere; Green land; Icebridge; Interferometric radars; Swath; Earth and Planetary Sciences (all); General Earth and Planetary Sciences
Abstract :
[en] Satellite and airborne observations of surface elevation are critical in understanding climatic and glaciological processes and quantifying their impact on changes in ice masses and sea level contribution. With the growing number of dedicated airborne campaigns and experimental and operational satellite missions, the science community has access to unprecedented and ever-increasing data. Combining elevation datasets allows potentially greater spatial-temporal coverage and improved accuracy; however, combining data from different sensor types and acquisition modes is difficult by differences in intrinsic sensor properties and processing methods. This study focuses on the combination of elevation measurements derived from ICESat-2 and Operation IceBridge LIDAR instruments and from CryoSat-2’s novel interferometric radar altimeter over Greenland. We develop a deep neural network based on sub-waveform information from CryoSat-2, elevation differences between radar and LIDAR, and additional inputs representing local geophysical information. A time series of maps are created showing observed LIDAR-radar differences and neural network model predictions. Mean LIDAR vs. interferometric radar adjustments and the broad spatial and temporal trends thereof are recreated by the neural network. The neural network also predicts radar-LIDAR differences with respect to waveform parameters better than a simple linear model; however, point level adjustments and the magnitudes of the spatial and temporal trends are underestimated.
Research Center/Unit :
SPHERES - ULiège
Disciplines :
Earth sciences & physical geography
Author, co-author :
Horton, Alex; Earthwave Ltd, Edinburgh, United Kingdom
Ewart, Martin; Earthwave Ltd, Edinburgh, United Kingdom
Gourmelen, Noel ; School of Geosciences, University of Edinburgh, Edinburgh, United Kingdom
Fettweis, Xavier ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie
Storkey, Amos; School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
Language :
English
Title :
Using Deep Learning to Model Elevation Differences between Radar and Laser Altimetry
Publication date :
December 2022
Journal title :
Remote Sensing
eISSN :
2072-4292
Publisher :
MDPI
Volume :
14
Issue :
24
Pages :
6210
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
Tier-1 supercomputer CÉCI : Consortium des Équipements de Calcul Intensif
Zwally H.J. Bindschadler R.A. Brenner A.C. Major J.A. Marsh J.G. Growth of Greenland Ice Sheet: Measurement Science 1989 246 1587 1589 10.1126/science.246.4937.1587 17834422
Wingham D.J. Ridout A.J. Scharroo R. Arthern R.J. Shum C.K. Antarctic Elevation Change from 1992 to 1996 Science 1998 282 456 458 10.1126/science.282.5388.456
Shepherd A. Wingham D. Payne T. Skvarca P. Larsen Ice Shelf Has Progressively Thinned Science 2003 302 856 859 10.1126/science.1089768
Shepherd A. Wingham D.J. Mansley J.A.D. Corr H.F.J. Inland Thinning of Pine Island Glacier, West Antarctica Science 2001 291 862 864 10.1126/science.291.5505.862
Zwally H.J. Giovinetto M.B. Li J. Cornejo H.G. Beckley M.A. Brenner A.C. Saba J.L. Yi D. Mass Changes of the Greenland and Antarctic Ice Sheets and Shelves and Contributions to Sea-Level Rise: 1992–2002 J. Glaciol. 2005 51 509 527 10.3189/172756505781829007
Wingham D.J. Shepherd A. Muir A. Marshall G.J. Mass Balance of the Antarctic Ice Sheet Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2006 364 1627 1635 10.1098/rsta.2006.1792
Fricker H.A. Scambos T. Bindschadler R. Padman L. An Active Subglacial Water System in West Antarctica Mapped from Space Science 2007 315 1544 1548 10.1126/science.1136897
Pritchard H.D. Arthern R.J. Vaughan D.G. Edwards L.A. Extensive Dynamic Thinning on the Margins of the Greenland and Antarctic Ice Sheets Nature 2009 461 971 975 10.1038/nature08471
Kääb A. Berthier E. Nuth C. Gardelle J. Arnaud Y. Contrasting Patterns of Early Twenty-First-Century Glacier Mass Change in the Himalayas Nature 2012 488 495 498 10.1038/nature11324
Bamber J.L. Griggs J.A. Hurkmans R.T.W.L. Dowdeswell J.A. Gogineni S.P. Howat I. Mouginot J. Paden J. Palmer S. Rignot E. et al. A New Bed Elevation Dataset for Greenland Cryosphere 2013 7 499 510 10.5194/tc-7-499-2013
McMillan M. Shepherd A. Sundal A. Briggs K. Muir A. Ridout A. Hogg A. Wingham D. Increased Ice Losses from Antarctica Detected by CryoSat-2 Geophys. Res. Lett. 2014 41 3899 3905 10.1002/2014GL060111
Gourmelen N. Goldberg D.N. Snow K. Henley S.F. Bingham R.G. Kimura S. Hogg A.E. Shepherd A. Mouginot J. Lenaerts J.T.M. et al. Channelized Melting Drives Thinning under a Rapidly Melting Antarctic Ice Shelf Geophys. Res. Lett. 2017 44 9796 9804 10.1002/2017GL074929
Gourmelen N. Escorihuela M.J. Shepherd A. Foresta L. Muir A. Garcia-Mondéjar A. Roca M. Baker S.G. Drinkwater M.R. CryoSat-2 Swath Interferometric Altimetry for Mapping Ice Elevation and Elevation Change Adv. Space Res. 2018 62 1226 1242 10.1016/j.asr.2017.11.014
Rémy F. Parouty S. Antarctic Ice Sheet and Radar Altimetry: A Review Remote Sens. 2009 1 1212 1239 10.3390/rs1041212
Nilsson J. Vallelonga P. Simonsen S.B. Sørensen L.S. Forsberg R. Dahl-Jensen D. Hirabayashi M. Goto-Azuma K. Hvidberg C.S. Kjær H.A. et al. Greenland 2012 Melt Event Effects on CryoSat-2 Radar Altimetry Geophys. Res. Lett. 2015 42 3919 3926 10.1002/2015GL063296
Slater T. Shepherd A. Mcmillan M. Armitage T.W.K. Otosaka I. Arthern R.J. Compensating Changes in the Penetration Depth of Pulse-Limited Radar Altimetry over the Greenland Ice Sheet IEEE Trans. Geosci. Remote Sens. 2019 57 9633 9642 10.1109/TGRS.2019.2928232
Gray L. Brief Communication: Glacier Run-off Estimation Using Altimetry-Derived Basin Volume Change: Case Study at Humboldt Glacier, Northwest Greenland Cryosphere 2021 15 1005 1014 10.5194/tc-15-1005-2021
Slater T. Shepherd A. McMillan M. Leeson A. Gilbert L. Muir A. Munneke P.K. Noël B. Fettweis X. van den Broeke M. et al. Increased Variability in Greenland Ice Sheet Runoff from Satellite Observations Nat. Commun. 2021 12 6069 10.1038/s41467-021-26229-4 34725324
Arthern R.J. Wingham D.J. Ridout A.L. Controls on ERS Altimeter Measurements over Ice Sheets: Footprint-Scale Topography, Backscatter Fluctuations, and the Dependence of Microwave Penetration Depth on Satellite Orientation J. Geophys. Res. Atmos. 2001 106 33471 33484 10.1029/2001JD000498
Gray L. Burgess D. Copland L. Langley K. Gogineni P. Paden J. Leuschen C. van As D. Fausto R. Joughin I. et al. Measuring Height Change around the Periphery of the Greenland Ice Sheet with Radar Altimetry Front. Earth Sci. 2019 7 146 10.3389/feart.2019.00146
Recchia L. Scagliola M. Giudici D. Kuschnerus M. An Accurate Semianalytical Waveform Model for Mispointed SAR Interferometric Altimeters IEEE Geosci. Remote Sens. Lett. 2017 14 1537 1541 10.1109/LGRS.2017.2720847
Snauffer A.M. Hsieh W.W. Cannon A.J. Schnorbus M.A. Improving Gridded Snow Water Equivalent Products in British Columbia, Canada: Multi-Source Data Fusion by Neural Network Models Cryosphere 2018 12 891 905 10.5194/tc-12-891-2018
Tollenaar V. Zekollari H. Lhermitte S. Tax D.M.J. Debaille V. Goderis S. Claeys P. Pattyn F. Unexplored Antarctic Meteorite Collection Sites Revealed through Machine Learning Sci. Adv. 2022 8 eabj8138 10.1126/sciadv.abj8138 35080966
Braakmann-Folgmann A. Donlon C. Estimating Snow Depth on Arctic Sea Ice Using Satellite Microwave Radiometry and a Neural Network Cryosphere 2019 13 2421 2438 10.5194/tc-13-2421-2019
Memarian Sorkhabi O. Asgari J. Amiri-Simkooei A. Wavelet Decomposition and Deep Learning of Altimetry Waveform Retracking for Lake Urmia Water Level Survey Mar. Georesources Geotechnol. 2022 40 361 369 10.1080/1064119X.2021.1899348
Gray L. Burgess D. Copland L. Cullen R. Galin N. Hawley R. Helm V. Interferometric Swath Processing of Cryosat Data for Glacial Ice Topography Cryosphere 2013 7 1857 1867 10.5194/tc-7-1857-2013
Hawley R.L. Shepherd A. Cullen R. Helm V. Wingham D.J. Ice-Sheet Elevations from across-Track Processing of Airborne Interferometric Radar Altimetry Geophys. Res. Lett. 2009 36 L22501 10.1029/2009GL040416
Krabill W. IceBridge ATM L2 Icessn Elevation, Slope, and Roughness, Version 2 NASA Distribution Active Archive Center, National Snow Ice Data Center Boulder, CO, USA 2014
Smith B. ATLAS/ICESat-2 L3A Land Ice Height, Version 3 National Snow and Ice Data Center Boulder, CO, USA 2020
Porter C. Morin P. Howat I. Noh M.-J. Bates B. Peterman K. Keesey S. Schlenk M. Gardiner J. Tomko K. et al. ArcticDEM, Version 3 2019 Available online: https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/OHHUKH (accessed on 20 February 2022)
Legrésy B. Rémy F. Altimetric Observations of Surface Characteristics of the Antarctic Ice Sheet J. Glaciol. 1997 43 265 275 10.1017/S002214300000321X
Virtanen P. Gommers R. Oliphant T.E. Haberland M. Reddy T. Cournapeau D. Burovski E. Peterson P. Weckesser W. Bright J. et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python Nat. Methods 2020 17 261 272 10.1038/s41592-019-0686-2
McNabb R. Nuth C. Kääb A. Girod L. Sensitivity of Glacier Volume Change Estimation to DEM Void Interpolation Cryosphere 2019 13 895 910 10.5194/tc-13-895-2019
Paszke A. Gross S. Massa F. Lerer A. Bradbury J. Chanan G. Killeen T. Lin Z. Gimelshein N. Antiga L. et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library Advances in Neural Information Processing Systems 32 Curran Associates, Inc. Nice, France 2019 8024 8035
Maas A.L. Hannun A.Y. Ng A.Y. Rectifier Nonlinearities Improve Neural Network Acoustic Models Proc. Icml. 2013 30 3
Klambauer G. Unterthiner T. Mayr A. Hochreiter S. Self-Normalizing Neural Networks arXiv 2017 1706.02515 10.48550/ARXIV.1706.02515
Srivastava N. Hinton G. Krizhevsky A. Sutskever I. Salakhutdinov R. Dropout: A Simple Way to Prevent Neural Networks from Overfitting J. Mach. Learn. Res. 2014 15 1929 1958
Ioffe S. Szegedy C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift Proceedings of the 32nd International Conference on Machine Learning Bach F. Blei D. PMLR Lille, France 2015 Volume 37 448 456
Sutskever I. Martens J. Dahl G. Hinton G. On the Importance of Initialization and Momentum in Deep Learning Proceedings of the 30th International Conference on Machine Learning Atlanta, GA, USA 16–21 June 2013 Dasgupta S. McAllester D. PMLR Atlanta, GA, USA 2013 Volume 28 1139 1147
Kingma D.P. Ba J. Adam: A Method for Stochastic Optimization arXiv 2014 1412.6980
Huber P.J. Robust Estimation of a Location Parameter Ann. Math. Stat. 1964 35 73 101 10.1214/aoms/1177703732
Pedregosa F. Varoquaux G. Gramfort A. Michel V. Thirion B. Grisel O. Blondel M. Prettenhofer P. Weiss R. Dubourg V. et al. Scikit-Learn: Machine Learning in Python J. Mach. Learn. Res. 2011 12 2825 2830
Earthwave The University of Edinburgh. isardSAT CryoTEMPO-EOLIS—Elevation over Land Ice from Swath—Product Handbook 2020 Available online: https://Earth.Esa.Int/Eogateway/Documents/20142/37627/CryoTEMPO-Thematic-Product-Handbook.Pdf (accessed on 20 February 2022)
Gray L. Burgess D. Copland L. Dunse T. Langley K. Moholdt G. A Revised Calibration of the Interferometric Mode of the CryoSat-2 Radar Altimeter Improves Ice Height and Height Change Measurements in Western Greenland Cryosphere 2017 11 1041 1058 10.5194/tc-11-1041-2017
Davis C.H. Moore R.K. A Combined Surface-and Volume-Scattering Model for Ice-Sheet Radar Altimetry J. Glaciol. 1993 39 675 686 10.1017/S0022143000016579
Ridley J.K. Partington K.C. A Model of Satellite Radar Altimeter Return from Ice Sheets Int. J. Remote Sens. 1988 9 601 624 10.1080/01431168808954881
Wingham D.J. Francis C.R. Baker S. Bouzinac C. Brockley D. Cullen R. de Chateau-Thierry P. Laxon S.W. Mallow U. Mavrocordatos C. et al. CryoSat: A Mission to Determine the Fluctuations in Earth’s Land and Marine Ice Fields Adv. Space Res. 2006 37 841 871 10.1016/j.asr.2005.07.027
Krabill W. Greenland Ice Sheet: Increased Coastal Thinning Geophys. Res. Lett. 2004 31 L24402 10.1029/2004GL021533
Bingham A.W. Drinkwater M.R. Recent Changes in the Microwave Scattering Properties of the Antarctic Ice Sheet IEEE Trans. Geosci. Remote Sens. 2000 38 1810 1820 10.1109/36.851765
Brunt K.M. Neumann T.A. Smith B.E. Assessment of ICESat-2 Ice Sheet Surface Heights, Based on Comparisons over the Interior of the Antarctic Ice Sheet Geophys. Res. Lett. 2019 46 13072 13078 10.1029/2019GL084886
Luthcke S.B. Thomas T.C. Pennington T.A. Rebold T.W. Nicholas J.B. Rowlands D.D. Gardner A.S. Bae S. ICESat-2 Pointing Calibration and Geolocation Performance Earth Space Sci. 2021 8 e2020EA001494 10.1029/2020EA001494
Fettweis X. Hofer S. Krebs-Kanzow U. Amory C. Aoki T. Berends C.J. Born A. Box J.E. Delhasse A. Fujita K. et al. GrSMBMIP: Intercomparison of the Modelled 1980–2012 Surface Mass Balance over the Greenland Ice Sheet Cryosphere 2020 14 3935 3958 10.5194/tc-14-3935-2020
Kern M. Cullen R. Berruti B. Bouffard J. Casal T. Drinkwater M.R. Gabriele A. Lecuyot A. Ludwig M. Midthassel R. et al. The Copernicus Polar Ice and Snow Topography Altimeter (CRISTAL) High-Priority Candidate Mission Cryosphere 2020 14 2235 2251 10.5194/tc-14-2235-2020