Achilles tendon; fatty infiltration; muscle force; muscular degeneration; satellite cells; second-harmonic generation microscopy; Medicine (miscellaneous); Biochemistry, Genetics and Molecular Biology (all); General Biochemistry, Genetics and Molecular Biology
Abstract :
[en] Achilles tendon rupture is a frequent injury with an increasing incidence. After clinical surgical repair, aimed at suturing the tendon stumps back into their original position, the repaired Achilles tendon is often plastically deformed and mechanically less strong than the pre-injured tissue, with muscle fatty degeneration contributing to function loss. Despite clinical outcomes, pre-clinical research has mainly focused on tendon structural repair, with a lack of knowledge regarding injury progression from tendon to muscle and its consequences on muscle degenerative/regenerative processes and function. Here, we characterize the morphological changes in the tendon, the myotendinous junction and muscle belly in a mouse model of Achilles tendon complete rupture, finding cellular and fatty infiltration, fibrotic tissue accumulation, muscle stem cell decline and collagen fiber disorganization. We use novel imaging technologies to accurately relate structural alterations in tendon fibers to pathological changes, which further explain the loss of muscle mechanical function after tendon rupture. The treatment of tendon injuries remains a challenge for orthopedics. Thus, the main goal of this study is to bridge the gap between clinicians' knowledge and research to address the underlying pathophysiology of ruptured Achilles tendon and its consequences in the gastrocnemius. Such studies are necessary if current practices in regenerative medicine for Achilles tendon ruptures are to be improved.
Gil-Melgosa, Lara ; Orthopedic Surgery Department, Clínica Universidad de Navarra (CUN), 31008 Pamplona, Spain ; Regenerative Medicine Program, Foundation for Applied Medical Research (FIMA), University of Navarra (UNAV), 31008 Pamplona, Spain ; Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
Grasa, Jorge ; Aragón Institute of Engineering Research (I3A), University of Zaragoza, 50018 Zaragoza, Spain ; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
Urbiola, Ainhoa; Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain ; Imaging Platform, Foundation for Applied Medical Research (FIMA), University of Navarra (UNAV), 31008 Pamplona, Spain
Llombart, Rafael ; Orthopedic Surgery Department, Clínica Universidad de Navarra (CUN), 31008 Pamplona, Spain ; Regenerative Medicine Program, Foundation for Applied Medical Research (FIMA), University of Navarra (UNAV), 31008 Pamplona, Spain ; Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
Susaeta Ruiz, Miguel ; Université de Liège - ULiège > GIGA ; Regenerative Medicine Program, Foundation for Applied Medical Research (FIMA), University of Navarra (UNAV), 31008 Pamplona, Spain ; Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
Montiel, Verónica ; Orthopedic Surgery Department, Clínica Universidad de Navarra (CUN), 31008 Pamplona, Spain ; Regenerative Medicine Program, Foundation for Applied Medical Research (FIMA), University of Navarra (UNAV), 31008 Pamplona, Spain ; Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
Ederra, Cristina; Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain ; Imaging Platform, Foundation for Applied Medical Research (FIMA), University of Navarra (UNAV), 31008 Pamplona, Spain
Calvo, Begoña ; Aragón Institute of Engineering Research (I3A), University of Zaragoza, 50018 Zaragoza, Spain ; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
Ariz, Mikel; Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain ; Imaging Platform, Foundation for Applied Medical Research (FIMA), University of Navarra (UNAV), 31008 Pamplona, Spain
Ripalda-Cemborain, Purificación; Orthopedic Surgery Department, Clínica Universidad de Navarra (CUN), 31008 Pamplona, Spain ; Regenerative Medicine Program, Foundation for Applied Medical Research (FIMA), University of Navarra (UNAV), 31008 Pamplona, Spain ; Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
Prosper, Felipe ; Regenerative Medicine Program, Foundation for Applied Medical Research (FIMA), University of Navarra (UNAV), 31008 Pamplona, Spain ; Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain ; Haematology Department, Clínica Universidad de Navarra, 31008 Pamplona, Spain
Ortiz-de-Solórzano, Carlos ; Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain ; Imaging Platform, Foundation for Applied Medical Research (FIMA), University of Navarra (UNAV), 31008 Pamplona, Spain
Pons-Villanueva, Juan ; Orthopedic Surgery Department, Clínica Universidad de Navarra (CUN), 31008 Pamplona, Spain ; Regenerative Medicine Program, Foundation for Applied Medical Research (FIMA), University of Navarra (UNAV), 31008 Pamplona, Spain ; Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
Pérez Ruiz, Ana; Regenerative Medicine Program, Foundation for Applied Medical Research (FIMA), University of Navarra (UNAV), 31008 Pamplona, Spain ; Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
Funding: Research support was provided by the Spanish Ministerio de Ciencia, Innovación y Univer-sidades (Grant PID2020-113822RB-C21 & PID2020-113822RB-C22) and the Department of Industry and Innovation (Government of Aragon) through the research group Grant T24-20R (cofinanced by Feder). Part of the work was performed by the ICTS “NANBIOSIS” specifically by the Tissue & Scaffold Characterization Unit (U13) of the CIBER in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN at the University of Zaragoza). CIBER actions are financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. C.O.-d.-S. acknowledges funding project RTI2018-094494-B-C22 financed by MCIN/AEI /10.13039/501100011033 and FEDER Funds.We especially thank Carolina Jorrin for magnificent technical support. We thank DSHB for the antibodies used in this study. Research support was provided by the Spanish Ministerio de Ciencia, Innovación y Universidades (Grant PID2020-113822RB-C21 & PID2020-113822RB-C22) and the Department of Industry and Innovation (Government of Aragon) through the research group Grant T24-20R (cofinanced by Feder). Part of the work was performed by the ICTS “NANBIOSIS” specifically by the Tissue & Scaffold Characterization Unit (U13) of the CIBER in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN at the University of Zaragoza). CIBER actions are financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. C.O.-d.-S. acknowledges funding project RTI2018-094494-B-C22 financed by MCIN/AEI /10.13039/501100011033 and FEDER Funds.
Holm, C.; Kjaer, M.; Eliasson, P. Achilles tendon rupture—Treatment and complications: A systematic review. Scand. J. Med. Sci. Sports 2014, 25, e1–e10. [CrossRef]
Lemme, N.J.; Li, N.Y.; DeFroda, S.F.; Kleiner, J.; Owens, B.D. Epidemiology of Achilles Tendon Ruptures in the United States: Athletic and Nonathletic Injuries From 2012 to 2016. Orthop. J. Sports Med. 2018, 6, 2325967118808238. [CrossRef] [PubMed]
Nilsson, N.; Helander, K.N.; Senorski, E.H.; Holm, A.; Karlsson, J.; Svensson, M.; Westin, O. The economic cost and patient-reported outcomes of chronic Achilles tendon ruptures. J. Exp. Orthop. 2020, 7, 60. [CrossRef] [PubMed]
Magnusson, S.P.; Langberg, H.; Kjaer, M. The pathogenesis of tendinopathy: Balancing the response to loading. Nat. Rev. Rheumatol. 2010, 6, 262–268. [CrossRef]
Kirkendall, D.T.; Garrett, W.E. Function and biomechanics of tendons. Scand. J. Med. Sci. Sports 2007, 7, 62–66. [CrossRef]
Heikkinen, J.; Lantto, I.; Flinkkila, T.; Ohtonen, P.; Niinimaki, J.; Siira, P.; Laine, V.; Leppilahti, J. Soleus atrophy is common after the nonsurgical treatment of acute achilles tendon ruptures: A randomized clinical trial comparing surgical and non-surgical functional treatments. Am. J. Sports Med. 2017, 45, 1395–1404. [CrossRef]
Hoffmann, A.; Mamisch, N.; Buck, F.M.; Espinosa, N.; Pfirrmann, C.W.A.; Zanetti, M. Oedema and fatty degeneration of the soleus and gastrocnemius muscles on MR images in patients with achilles tendon abnormalities. Eur. Radiol. 2011, 21, 1996–2003. [CrossRef]
Leppilahti, J.; Lãhde, S.L.; Forsman, K.; Kangas, J.; Kauranen, K.; Orava, S. Relationship between calf muscle size and strength after achilles rupture repair. Foot Ankle Int. 2000, 21, 330–335. [CrossRef]
Heikkinen, J.; Lantto, I.; Piilonen, J.; Flinkkila, T.; Ohtonen, P.; Siira, P.; Laine, V.; Niinimäki, J.; Pajala, A.; Leppilahti, J. Tendon length, calf muscle atrophy, and strength deficit after acute achilles tendon rupture: Long-term follow-up of patients in a previous study. J. Bone Jt. Surg. Am. 2017, 99, 1509–1515. [CrossRef] [PubMed]
Rosso, C.; Vavken, P.; Polzer, C.; Buckland, D.M.; Studler, U.; Weisskopf, L.; Lottenbach, M.; Müller, A.M.; Valderrabano, V. Long-term outcomes of muscle volume and achilles tendon length after achilles tendon ruptures. Knee Surg. Sports Traumatol. Arthrosc. 2013, 21, 21–1369. [CrossRef] [PubMed]
Booth, B.A.; Mistovich, R.J.; Janout, M.; Stills, H.F.; Laughlin, R.T. Fatty infiltration of the gastrocsoleus after tendo-achilles lengthening and gastrocnemius recession in a rabbit model. Foot Ankle Int. 2009, 30, 778–782. [CrossRef] [PubMed]
Freedman, B.R.; Gordon, J.A.; Soslowsky, L.J. The Achilles tendon: Fundamental properties and mechanisms governing healing. Muscle Ligaments Tendons J. 2014, 4, 245–255. [CrossRef]
Diniz, P.; Pacheco, J.; Guerra-Pinto, F.; Pereira, H.; Ferreira, F.C.; Kerkhoffs, G. Achilles tendon elongation after acute rupture: Is it a problem? a systematic review. Knee Surg. Sports Traumatol. Arthrosc. 2000, 28, 4011–4030. [CrossRef]
Wu, Y.; Mu, Y.; Yin, L.; Wang, Z.; Liu, W.; Wan, H. Complications in the Management of Acute Achilles Tendon Rupture: A Systematic Review and Network Meta-analysis of 2060 Patients. Am. J. Sports Med. 2019, 47, 2251–2260. [CrossRef] [PubMed]
Eken, G.; Misir, A.; Tangay, C.; Atici, T.; Demirhan, N.; Sener, N. Effect of muscle atrophy and fatty infiltration on midterm clinical, and functional outcomes after Achilles tendon repair. Foot Ankle Surg. 2020, 27, 730–735. [CrossRef]
Zantop, T.; Gilbert, T.W.; Yoder, M.C.; Badylak, S.F. Extracellular matrix scaffolds are repopu-lated by bone marrow-derived cells in a mouse model of achilles tendon reconstruction. J. Orthop. Res. 2006, 24, 1299–1309. [CrossRef] [PubMed]
Beattie, A.J.; Gilbert, T.W.; Guyot, J.P.; Yates, A.J.; Badylak, S.F. Chemoattraction of progenitor cells by remodeling extracellular matrix scaffolds. Tissue Eng. Part A 2009, 15, 1119–1125. [CrossRef] [PubMed]
Beason, D.P.; Kuntz, A.; Hsu, J.E.; Miller, K.S.; Soslowsky, L.J. Development and evaluation of multiple tendon injury models in the mouse. J. Biomech. 2012, 45, 1550–1553. [CrossRef]
Terrón, V.M.; López, E.M.; Granero-Moltó, F.; Esteban, M.A.; Prosper, F.; Pérez-Ruiz, A.; Pons-Villanueva, J. Muscular injuries after tendon rupture in the rotator cuff of animal models. systematic review. Muscle Ligaments Tendon J. 2018, 8, 261–275. [CrossRef]
Ohzono, H.; Gotoh, M.; Nakamura, H.; Honda, H.; Mitsui, Y.; Kakuma, T.; Okawa, T.; Shiba, N. Effect of Preoperative Fatty Degeneration of the Rotator Cuff Muscles on the Clinical Outcome of Patients with Intact Tendons After Arthroscopic Rotator Cuff Repair of Large/Massive Cuff Tears. Am. J. Sports Med. 2017, 45, 2975–2981. [CrossRef]
Bobadilla, M.; Sainz, N.; Abizanda, G.; Orbe, J.; Rodriguez, J.; Páramo, J.; Prósper, F.; Pérez-Ruiz, A. The cxcr4/sdf1 axis improves muscle regeneration through mmp-10 activity. Stem Cells Dev. 2014, 23, 1417–1427. [CrossRef] [PubMed]
Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of image analysis. Nat. Methods 2012, 9, 671–675. [CrossRef] [PubMed]
Grasa, J.; Sierra, M.; Lauzeral, N.; Muñoz, M.; Mena, F.J.M.; Calvo, B. Active behavior of abdominal wall muscles: Experimental results and numerical model formulation. J. Mech. Behav. Biomed. Mater. 2016, 61, 444–454. [CrossRef] [PubMed]
Forcina, L.; Miano, C.; Pelosi, L.; Musarò, A. An Overview About the Biology of Skeletal Muscle Satellite Cells. Curr. Genom. 2019, 20, 24–37. [CrossRef]
Chen, G.; Liu, Y.; Zhu, X.; Huang, Z.; Cai, J.; Chen, R.; Xiong, S.; Zeng, H. Phase and texture characterizations of scar collagen second-harmonic generation images varied with scar duration. Microsc. Microanal. 2015, 21, 855–862. [CrossRef]
Blake, D.J.; Weir, A.; Newey, S.E.; Davies, K.E. Function and Genetics of Dystrophin and Dystrophin-Related Proteins in Muscle. Physiol. Rev. 2002, 82, 291–329. [CrossRef]
Débarre, D.; Supatto, W.; Pena, A.-M.; Fabre, A.; Tordjmann, T.; Combettes, L.; Schanne-Klein, M.-C.; Beaurepaire, E. Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy. Nat. Methods 2006, 3, 47–53. [CrossRef] [PubMed]
Bottagisio, M.; Lovati, A.B. A review on animal models and treatments for the reconstruction of achilles and flexor tendons. J. Mater. Sci. Mater. Med. 2017, 28, 45. [CrossRef] [PubMed]
Gaeta, M.; Messina, S.; Mileto, A.; Vita, G.L.; Ascenti, G.; Vinci, S.; Bottari, A.; Vita, G.; Settineri, N.; Bruschetta, D.; et al. Muscle fat-fraction and mapping in Duchenne muscular dystrophy: Evaluation of disease distribution and correlation with clinical assessments. Skelet. Radiol. 2011, 41, 955–961. [CrossRef]
Joe, A.W.B.; Yi, L.; Natarajan, A.; Le Grand, F.; So, L.; Wang, J.; Rudnicki, M.; Rossi, F.M.V. Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nature 2010, 12, 153–163. [CrossRef]
Farup, J.; Madaro, L.; Puri, P.L.; Mikkelsen, U.R. Interactions between muscle stem cells, mesenchymal-derived cells and immune cells in muscle homeostasis, regeneration and disease. Cell Death Dis. 2015, 6, e1830. [CrossRef]
Uezumi, A.; Fukada, S.-I.; Yamamoto, N.; Takeda, S.; Tsuchida, K. Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nature 2010, 12, 143–152. [CrossRef]
Rowshan, K.; Hadley, S.; Pham, K.; Caiozzo, V.; Lee, T.Q.; Gupta, R. Development of Fatty Atrophy After Neurologic and Rotator Cuff Injuries in an Animal Model of Rotator Cuff Pathology. J. Bone Jt. Surg. Am. Vol. 2010, 92, 2270–2278. [CrossRef] [PubMed]
Uezumi, A.; Fukada, S.-I.; Yamamoto, N.; Ikemoto-Uezumi, M.; Nakatani, M.; Morita, M.; Yamaguchi, A.; Yamada, H.; Nishino, I.; Hamada, Y.; et al. Identification and characterization of PDGFRα+ mesenchymal progenitors in human skeletal muscle. Cell Death Dis. 2014, 5, e1186. [CrossRef]
Harvey, T.; Flamenco, S.; Fan, C.-M. A Tppp3+Pdgfra+ tendon stem cell population contributes to regeneration and reveals a shared role for PDGF signalling in regeneration and fibrosis. Nature 2019, 21, 1490–1503. [CrossRef]
Misir, A.; Kizkapan, T.B.; Arikan, Y.; Akbulut, D.; Onder, M.; Yildiz, K.I.; Ozkoçer, S.E. Repair within the first 48 h in the treatment of acute Achilles tendon ruptures achieves the best biomechanical and histological outcomes. Knee Surg. Sports Traumatol. Arthrosc. 2019, 28, 2788–2797. [CrossRef] [PubMed]
Meulenkamp, B.; Woolnough, T.; Cheng, W.; Shorr, R.; Stacey, D.; Richards, M.; Gupta, A.; Fergusson, D.; Graham, I.D. What is the best evidence to guide management of acute achilles tendon ruptures? a systematic review and network meta-analysis of randomized controlled trials. Clin. Orthop. Relat. Res. 2021, 479, 2119–2131. [CrossRef] [PubMed]
Junqueira, L.C.; Bignolas, G.; Brentani, R.R. Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections. Histochem. J. 1979, 11, 447–455. [CrossRef]
Lattouf, R.; Younes, R.; Lutomski, D.; Naaman, N.; Godeau, G.; Senni, K.; Changotade, S. Picrosirius red staining: A useful tool to appraise collagen networks in normal and pathological tissues. J. Histochem. Cytochem. 2014, 62, 751–758. [CrossRef]
Kadler, K.E.; Holmes, D.F.; Trotter, J.A.; Chapman, J.A. Collagen fibril formation. Biochem. J. 1996, 316, 1–11. [CrossRef] [PubMed]
Bozec, L.; Horton, M. Topography and Mechanical Properties of Single Molecules of Type I Collagen Using Atomic Force Microscopy. Biophys. J. 2005, 88, 4223–4231. [CrossRef]
Pawley, J.B. Handbook of Biological Confocal Microscopy, 3rd ed.; Springer: New York, NY, USA, 2006.
Freund, I.; Deutsch, M. Second-harmonic microscopy of biological tissue. Opt. Lett. 1986, 11, 94–96. [CrossRef]
Zipfel, W.R.; Williams, R.M.; Christie, R.; Nikitin, A.Y.; Hyman, B.T.; Webb, W.W. Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc. Natl. Acad. Sci. USA 2003, 100, 7075–7080. [CrossRef] [PubMed]
Brown, E.; McKee, T.; diTomaso, E.; Pluen, A.; Seed, B.; Boucher, Y.; Jain, R.K. Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation. Nat. Med. 2003, 9, 796–800. [CrossRef]
Strupler, M.; Pena, A.-M.; Hernest, M.; Tharaux, P.-L.; Martin, J.-L.; Beaurepaire, E.; Schanne-Klein, M.-C. Second harmonic imaging and scoring of collagen in fibrotic tissues. Opt. Express 2007, 15, 4054–4065. [CrossRef] [PubMed]
Zoumi, A.; Lu, X.; Kassab, G.S.; Tromberg, B.J. Imaging coronary artery microstructure using second harmonic and two-photon fluorescence microscopy. Biophys. J. 2004, 87, 2778–2786. [CrossRef] [PubMed]