Brain states are frequently represented using a unidimensional scale measuring the richness of subjective experience (level of consciousness). This description assumes a mapping between the high-dimensional space of whole-brain configurations and the trajectories of brain states associated with changes in consciousness, yet this mapping and its properties remain unclear. We combine whole-brain modeling, data augmentation, and deep learning for dimensionality reduction to determine a mapping representing states of consciousness in a low-dimensional space, where distances parallel similarities between states. An orderly trajectory from wakefulness to patients with brain injury is revealed in a latent space whose coordinates represent metrics related to functional modularity and structure-function coupling, increasing alongside loss of consciousness. Finally, we investigate the effects of model perturbations, providing geometrical interpretation for the stability and reversibility of states. We conclude that conscious awareness depends on functional patterns encoded as a low-dimensional trajectory within the vast space of brain configurations.
Disciplines :
Neurosciences & behavior
Author, co-author :
Perl, Yonatan Sanz; Department of Physics, University of Buenos Aires, Intendente Guiraldes 2160
Pallavicini, Carla; Department of Physics, University of Buenos Aires, Intendente Guiraldes 2160
Piccinini, Juan; Department of Physics, University of Buenos Aires, Intendente Guiraldes 2160
Demertzi, Athina ; Université de Liège - ULiège > GIGA > GIGA CRC In vivo Imaging - Physiology of Cognition
Bonhomme, Vincent ; Centre Hospitalier Universitaire de Liège - CHU > > Service d'anesthésie - réanimation ; Anesthesia and Intensive Care Laboratory, GIGA-Consciousness, GIGA Institute,
Martial, Charlotte ; Université de Liège - ULiège > GIGA > GIGA Consciousness - Coma Science Group
Panda, Rajanikant ; Université de Liège - ULiège > GIGA > GIGA Consciousness - Coma Science Group
Alnagger, Naji ; Université de Liège - ULiège > GIGA > GIGA Consciousness - Coma Science Group
Annen, Jitka ; Université de Liège - ULiège > GIGA > GIGA Consciousness - Coma Science Group
Gosseries, Olivia ; Université de Liège - ULiège > GIGA > GIGA Consciousness - Coma Science Group
Ibañez, Agustin; National Scientific and Technical Research Council (CONICET), CABA, Buenos Aires,
Laufs, Helmut; Department of Neurology and Brain Imaging Center, Goethe University, Frankfurt am
Sitt, Jacobo D; Paris Brain Institute (ICM), Paris, France, INSERM U 1127, Paris, France, CNRS
Jirsa, Viktor K; Institut de Neurosciences des Systèmes, Aix Marseille Université, Marseille,
Kringelbach, Morten L; Department of Psychiatry, University of Oxford, Oxford, UK, Center for Music in
Laureys, Steven ; Centre Hospitalier Universitaire de Liège - CHU > > Centre du Cerveau²
Deco, Gustavo; Center for Brain and Cognition, Computational Neuroscience Group, Universitat
Tagliazucchi, Enzo; Department of Physics, University of Buenos Aires, Intendente Guiraldes 2160
Shew, W.L., Plenz, D., The functional benefits of criticality in the cortex. Neuroscientist 19 (2013), 88–100.
Tononi, G., Edelman, G.M., Sporns, O., Complexity and coherency: integrating information in the brain. Trends Cogn. Sci. 2 (1998), 474–484.
Shine, J.M., Bissett, P.G., Bell, P.T., Koyejo, O., Balsters, J.H., Gorgolewski, K.J., Moodie, C.A., Poldrack, R.A., The dynamics of functional brain networks: integrated network states during cognitive task performance. Neuron 92 (2016), 544–554.
Tassi, P., Muzet, A., Defining the states of consciousness. Neurosci. Biobehav. Rev. 25 (2001), 175–191.
Berry, R.B., Brooks, R., Gamaldo, C.E., Harding, S.M., Lloyd, R.M., Marcus, C.L., Vaughn, B.V., AASM | scoring manual version 2.2 the AASM manual for the scoring of sleep and associated events. Rules, terminology and technical specifications. Am. Acad. Sleep Med. 176 (2015), 16–31.
Kalmar, K., Giacino, J.T., The JFK coma recovery scale - revised. Neuropsychol. Rehabil. 15 (2005), 454–460.
Dawson, R., von Fintel, N., Nairn, S., Sedation assessment using the Ramsay scale. Emerg. Nurse 18 (2010), 18–20.
Laureys, S., Science and society: death, unconsciousness and the brain. Nat. Rev. Neurosci. 6 (2005), 899–909.
Steriade, M., Timofeev, I., Grenier, F., Natural waking and sleep states: a view from inside neocortical neurons. J. Neurophysiol. 85 (2001), 1969–1985.
Perl, Y.S., Pallavicini, C., Ipiña, I.P., Kringelbach, M., Deco, G., Laufs, H., Tagliazucchi, E., Data augmentation based on dynamical systems for the classification of brain states. Chaos Solit. Fractals, 139, 2020, 110069.
Perl, Y.S., Bocaccio, H., Pérez-Ipiña, I., Zamberlán, F., Piccinini, J., Laufs, H., Kringelbach, M., Deco, G., Tagliazucchi, E., Generative embeddings of brain collective dynamics using variational autoencoders. Phys. Rev. Lett., 125, 2020, 238101.
Tagliazucchi, E., von Wegner, F., Morzelewski, A., Brodbeck, V., Borisov, S., Jahnke, K., Laufs, H., Large-scale brain functional modularity is reflected in slow electroencephalographic rhythms across the human non-rapid eye movement sleep cycle. Neuroimage 70 (2013), 327–339.
Boly, M., Perlbarg, V., Marrelec, G., Schabus, M., Laureys, S., Doyon, J., Pélégrini-Issac, M., Maquet, P., Benali, H., Hierarchical clustering of brain activity during human nonrapid eye movement sleep. Proc. Natl. Acad. Sci. USA 109 (2012), 5856–5861.
Barttfeld, P., Uhrig, L., Sitt, J.D., Sigman, M., Jarraya, B., Dehaene, S., Signature of consciousness in the dynamics of resting-state brain activity. Proc. Natl. Acad. Sci. USA 112 (2015), 887–892.
Tagliazucchi, E., Crossley, N., Bullmore, E.T., Laufs, H., Deep sleep divides the cortex into opposite modes of anatomical–functional coupling. Brain Struct. Funct. 221 (2016), 4221–4234.
Sanz Perl, Y., Pallavicini, C., Pérez Ipiña, I., Demertzi, A., Bonhomme, V., Martial, C., Panda, R., Annen, J., Ibañez, A., Kringelbach, M., et al. Perturbations in dynamical models of whole-brain activity dissociate between the level and stability of consciousness. PLoS Comput. Biol., 17, 2021, e1009139.
Deco, G., Kringelbach, M.L., Jirsa, V.K., Ritter, P., The dynamics of resting fluctuations in the brain: metastability and its dynamical cortical core. Sci. Rep., 7, 2017, 3095.
Cordes, D., Haughton, V.M., Arfanakis, K., Carew, J.D., Turski, P.A., Moritz, C.H., Quigley, M.A., Meyerand, M.E., Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data. Am. J. Neuroradiol. 22 (2001), 1326–1333.
Ipiña, I.P., Kehoe, P.D., Kringelbach, M., Laufs, H., Ibañez, A., Deco, G., Perl, Y.S., Tagliazucchi, E., Modeling regional changes in dynamic stability during sleep and wakefulness. Neuroimage, 215, 2020, 116833.
Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M., Improved variational inference with inverse autoregressive flow. Adv. Neural Inf. Process. Syst., 29, 2016.
Chen, N., Klushyn, A., Ferroni, F., Bayer, J., van der Smagt, P., Learning flat latent manifolds with VAEs. Preprint at arXiv, 2020, 10.48550/arXiv.2002.04881.
Stevner, A.B.A., Vidaurre, D., Cabral, J., Rapuano, K., Nielsen, S.F.V., Tagliazucchi, E., Laufs, H., Vuust, P., Deco, G., Woolrich, M.W., et al. Discovery of key whole-brain transitions and dynamics during human wakefulness and non-REM sleep. Nat. Commun., 10, 2019, 11035.
Rué-Queralt, J., Stevner, A., Tagliazucchi, E., Laufs, H., Kringelbach, M.L., Deco, G., Atasoy, S., Decoding brain states on the intrinsic manifold of human brain dynamics across wakefulness and sleep. Commun. Biol., 4, 2021, 854.
Varley, T.F., Denny, V., Sporns, O., Patania, A., Topological analysis of differential effects of ketamine and propofol anaesthesia on brain dynamics. R. Soc. Open Sci., 8, 2021, 201971.
Sergent, C., Corazzol, M., Labouret, G., Stockart, F., Wexler, M., King, J.R., Meyniel, F., Pressnitzer, D., Bifurcation in brain dynamics reveals a signature of conscious processing independent of report. Nat. Commun., 12, 2021, 11149.
Windey, B., Cleeremans, A., Consciousness as a graded and an all-or-none phenomenon: a conceptual analysis. Conscious. Cogn. 35 (2015), 185–191.
Bayne, T., Carter, O., Dimensions of consciousness and the psychedelic state. Neurosci. Conscious., 2018, 2018, niy008.
Barttfeld, P., Bekinschtein, T.A., Salles, A., Stamatakis, E.A., Adapa, R., Menon, D.K., Sigman, M., Factoring the brain signatures of anesthesia concentration and level of arousal across individuals. Neuroimage. Clin. 9 (2015), 385–391.
Deco, G., Kringelbach, M.L., Great expectations: using whole-brain computational connectomics for understanding neuropsychiatric disorders. Neuron 84 (2014), 892–905.
Kringelbach, M.L., Cruzat, J., Cabral, J., Knudsen, G.M., Carhart-Harris, R., Whybrow, P.C., Logothetis, N.K., Deco, G., Dynamic coupling of whole-brain neuronal and neurotransmitter systems. Proc. Natl. Acad. Sci. USA 117 (2020), 9566–9576.
Deco, G., Cruzat, J., Cabral, J., Tagliazucchi, E., Laufs, H., Logothetis, N.K., Kringelbach, M.L., Awakening: predicting external stimulation to force transitions between different brain states. Proc. Natl. Acad. Sci. USA 116 (2019), 18088–18097.
Murray, J.D., Demirtaş, M., Anticevic, A., Biophysical modeling of large-scale brain dynamics and applications for computational psychiatry. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 3 (2018), 777–787.
Gollo, L.L., Roberts, J.A., Cocchi, L., Mapping how local perturbations influence systems-level brain dynamics. Neuroimage 160 (2017), 97–112.
Schiff, N.D., Giacino, J.T., Kalmar, K., Victor, J.D., Baker, K., Gerber, M., Fritz, B., Eisenberg, B., Biondi, T., O'Connor, J., et al. Behavioural improvements with thalamic stimulation after severe traumatic brain injury. Nature 448 (2007), 600–603.
Lemaire, J.J., Sontheimer, A., Pereira, B., Coste, J., Rosenberg, S., Sarret, C., Coll, G., Gabrillargues, J., Jean, B., Gillart, T., et al. Deep brain stimulation in five patients with severe disorders of consciousness. Ann. Clin. Transl. Neurol. 5 (2018), 1372–1384.
Angelakis, E., Liouta, E., Andreadis, N., Korfias, S., Ktonas, P., Stranjalis, G., Sakas, D.E., Transcranial direct current stimulation effects in disorders of consciousness. Arch. Phys. Med. Rehabil. 95 (2014), 283–289.
Thibaut, A., Bruno, M.A., Ledoux, D., Demertzi, A., Laureys, S., tDCS in patients with disorders of consciousness. Neurology 82 (2014), 1112–1118.
Wu, M., Yu, Y., Luo, L., Wu, Y., Gao, J., Ye, X., Luo, B., Efficiency of repetitive transcranial direct current stimulation of the dorsolateral prefrontal cortex in disorders of consciousness: a randomized sham-controlled study. Neural Plast., 2019, 2019, 7089543.
Zhang, Y., Song, W., Du, J., Huo, S., Shan, G., Li, R., Transcranial direct current stimulation in patients with prolonged disorders of consciousness: combined behavioral and event-related potential evidence. Front. Neurol., 8, 2017, 620.
Hermann, B., Raimondo, F., Hirsch, L., Huang, Y., Denis-Valente, M., Pérez, P., Engemann, D., Faugeras, F., Weiss, N., Demeret, S., et al. Combined behavioral and electrophysiological evidence for a direct cortical effect of prefrontal tDCS on disorders of consciousness. Sci. Rep., 10, 2020, 14323.
Tasserie, J. Uhrig L., Sitt J.D., Manasova D., Dupont M., Dehaene S., Jarraya B. Deep brain stimulation of the thalamus restores signatures of consciousness in a non-human primate model. Accept. (Sci. Adv.).8 eabl5547.
Kringelbach, M.L., Deco, G., Brain states and transitions: insights from computational neuroscience. Cell Rep., 32, 2020, 108128.
Jirsa, V.K., Proix, T., Perdikis, D., Woodman, M.M., Wang, H., Gonzalez-Martinez, J., Bernard, C., Bénar, C., Guye, M., Chauvel, P., Bartolomei, F., The Virtual Epileptic Patient: individualized whole-brain models of epilepsy spread. Neuroimage 145 (2017), 377–388.
Jobst, B.M., Hindriks, R., Laufs, H., Tagliazucchi, E., Hahn, G., Ponce-Alvarez, A., Stevner, A.B.A., Kringelbach, M.L., Deco, G., Increased stability and breakdown of brain effective connectivity during slow-wave sleep: mechanistic insights from whole-brain computational modelling. Sci. Rep., 7, 2017, 14634.
Wang, Y., Hutchings, F., Kaiser, M., Computational modeling of neurostimulation in brain diseases. Prog. Brain Res. 222 (2015), 191–228.
Breakspear, M., Jirsa, V., Deco, G., Computational models of the brain: from structure to function. Neuroimage 52 (2010), 727–730.
Deco, G., Jirsa, V.K., Ongoing cortical activity at rest: criticality, multistability, and ghost attractors. J. Neurosci. 32 (2012), 3366–3375.
Deco, G., Ponce-Alvarez, A., Hagmann, P., Romani, G.L., Mantini, D., Corbetta, M., How local excitation–inhibition ratio impacts the whole brain dynamics. J. Neurosci. 34 (2014), 7886–7898.
Freyer, F., Roberts, J.A., Ritter, P., Breakspear, M., A canonical model of multistability and scale-invariance in biological systems. PLoS Comput. Biol., 8, 2012, e1002634.
Honey, C.J., Kötter, R., Breakspear, M., Sporns, O., Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc. Natl. Acad. Sci. USA 104 (2007), 10240–10245.
Ghosh, A., Rho, Y., McIntosh, A.R., Kötter, R., Jirsa, V.K., Cortical network dynamics with time delays reveals functional connectivity in the resting brain. Cogn. Neurodyn. 2 (2008), 115–120.
Sanz Perl, Y., Escrichs, A., Tagliazucchi, E., Kringelbach, M.L., Deco, G., Strength-dependent perturbation of whole-brain model working in different regimes reveals the role of fluctuations in brain dynamics. PLoS Comput. Biol., 18, 2022, e1010662.
Marcus, D.S., Harwell, J., Olsen, T., Hodge, M., Glasser, M.F., Prior, F., Jenkinson, M., Laumann, T., Curtiss, S.W., Van Essen, D.C., Informatics and data mining tools and strategies for the human connectome project. Front. Neuroinform., 5, 2011, 4.
Tagliazucchi, E., Laufs, H., Decoding wakefulness levels from typical fMRI resting-state data reveals reliable drifts between wakefulness and sleep. Neuron 82 (2014), 695–708.
Boveroux, P., Vanhaudenhuyse, A., Bruno, M.A., Noirhomme, Q., Lauwick, S., Luxen, A., Degueldre, C., Plenevaux, A., Schnakers, C., Phillips, C., et al. Breakdown of within- and between-network resting state functional magnetic resonance imaging connectivity during propofol-induced loss of consciousness. Anesthesiology 113 (2010), 1038–1053.
Laureys, S., Celesia, G.G., Cohadon, F., Lavrijsen, J., León-Carrión, J., Sannita, W.G., Sazbon, L., Schmutzhard, E., von Wild, K.R., Zeman, A., et al. Unresponsive wakefulness syndrome: a new name for the vegetative state or apallic syndrome. BMC Med., 8, 2010, 68.
Power, J.D., Mitra, A., Laumann, T.O., Snyder, A.Z., Schlaggar, B.L., Petersen, S.E., Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage 84 (2014), 320–341.
Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., Joliot, M., Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15 (2002), 273–289.
Behrens, T.E.J., Woolrich, M.W., Jenkinson, M., Johansen-Berg, H., Nunes, R.G., Clare, S., Matthews, P.M., Brady, J.M., Smith, S.M., Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn. Reson. Med. 50 (2003), 1077–1088.
Hansen, J.Y., Shafiei, G., Markello, R.D., Smart, K., Cox, S.M.L., Nørgaard, M., Beliveau, V., Wu, Y., Gallezot, J.D., Aumont, É., et al. Mapping neurotransmitter systems to the structural and functional organization of the human neocortex. Nat. Neurosci. 25 (2022), 1569–1581.
Piccinini, J., Ipiñna, I.P., Laufs, H., Kringelbach, M., Deco, G., Sanz Perl, Y., Tagliazucchi, E., Noise-driven multistability vs deterministic chaos in phenomenological semi-empirical models of whole-brain activity. Chaos, 31, 2021, 023127.
Achard, S., Salvador, R., Whitcher, B., Suckling, J., Bullmore, E., A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J. Neurosci. 26 (2006), 63–72.