Hai, D.M.; FARAH/Sustainable Animal Production, Faculty of Veterinary Medicine, University of Liege (B43), Liege, 4000, Belgium, College of Aquaculture and Fisheries, Can Tho University, Can Tho, 900000, Viet Nam
Yen, D.T.; College of Aquaculture and Fisheries, Can Tho University, Can Tho, 900000, Viet Nam
Liem, P.T.; College of Aquaculture and Fisheries, Can Tho University, Can Tho, 900000, Viet Nam
Tam, B.M.; College of Aquaculture and Fisheries, Can Tho University, Can Tho, 900000, Viet Nam
Huong, D.T.T.; College of Aquaculture and Fisheries, Can Tho University, Can Tho, 900000, Viet Nam
Hang, B.T.B.; College of Aquaculture and Fisheries, Can Tho University, Can Tho, 900000, Viet Nam
Hieu, D.Q.; College of Aquaculture and Fisheries, Can Tho University, Can Tho, 900000, Viet Nam
Garigliany, Mutien-Marie ; Université de Liège - ULiège > Département de morphologie et pathologie (DMP) > Pathologie générale et autopsies
Kestemont, P.; Research Unit in Environmental and Evolutionary Biology, Institute of Life, Earth & Environnment, University of Namur, rue de Bruxelles 61, Namur, 5000, Belgium
Phuong, N.T.; College of Aquaculture and Fisheries, Can Tho University, Can Tho, 900000, Viet Nam
Farnir, Frédéric ; Université de Liège - ULiège > Département de gestion vétérinaire des Ressources Animales (DRA)
Language :
English
Title :
A High-Quality Genome Assembly of Striped Catfish (Pangasianodon hypophthalmus) Based on Highly Accurate Long-Read HiFi Sequencing Data
Publication date :
May 2022
Journal title :
Genes
ISSN :
2073-4425
Publisher :
MDPI
Volume :
13
Issue :
5
Peer reviewed :
Peer Reviewed verified by ORBi
Funding text :
Funding: This work was part of PANGAGEN project, supported by ARES‐CCD (Académie de Re‐ cherche et d’Enseignement Supérieur—Commission de la Coopération au Développement) and funded by the Belgian Development Cooperation (DRP/TPS 2017).
Phuong, N.T.; Oanh, D.T.H. Striped Catfish Aquaculture in Vietnam: A Decade of Unprecedented Development. In Success Stories in Asian Aquaculture; Silva, S.S., Davy, F.B., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 131–147. https://doi.org/10.1007/978-90-481-3087-0_7.
Phan, L.T.; Bui, T.M.; Nguyen, T.T.; Gooley, G.J.; Ingram, B.A.; Nguyen, H.V.; Nguyen, P.T.; De Silva, S.S. Current Status of Farming Practices of Striped Catfish, Pangasianodon hypophthalmus in the Mekong Delta, Vietnam. Aquaculture 2009, 296, 227– 236. https://doi.org/10.1016/j.aquaculture.2009.08.017.
Vietnam Association of Seafood Exporters and Producers (VASEP). Available online: http://vasep.com.vn (accessed on 25 February 2022).
De Silva, S.S.; Phuong, N.T. Striped Catfish Farming in the Mekong Delta, Vietnam: A Tumultuous Path to a Global Success. Rev. Aquac. 2011, 3, 45–73. https://doi.org/10.1111/j.1753-5131.2011.01046.x.
Hai, T.N.; Phuong, N.T.; Van, H.N.; Viet, L.Q. Promoting Coastal Aquaculture for Adaptation to Climate Change and Saltwater Intrusion in the Mekong Delta, Vietnam. World Aquac. 2020, 51, 19–26.
Yue, G.H.; Wang, L. Current Status of Genome Sequencing and Its Applications in Aquaculture. Aquaculture 2017, 468, 337–347. https://doi.org/10.1016/j.aquaculture.2016.10.036.
Abdelrahman, H.; ElHady, M.; Alcivar-Warren, A.; Allen, S.; Al-Tobasei, R.; Bao, L.; Beck, B.; Blackburn, H.; Bosworth, B.; Buchanan, J.; et al. Aquaculture Genomics, Genetics and Breeding in the United States: Current Status, Challenges, and Priorities for Future Research. BMC Genom. 2017, 18, 191. https://doi.org/10.1186/s12864-017-3557-1.
Liu, Z.; Liu, S.; Yao, J.; Bao, L.; Zhang, J.; Li, Y.; Jiang, C.; Sun, L.; Wang, R.; Zhang, Y.; et al. The Channel Catfish Genome Sequence Provides Insights into the Evolution of Scale Formation in Teleosts. Nat. Commun. 2016, 7, 757. https://doi.org/10.1038/ncomms11757.
Pang, M.; Fu, B.; Yu, X.; Liu, H.; Wang, X.; Yin, Z.; Xie, S.; Tong, J. Quantitative Trait Loci Mapping for Feed Conversion Efficiency in Crucian Carp (Carassius auratus). Sci. Rep. 2017, 7, 16971. https://doi.org/10.1038/s41598-017-17269-2.
Gutierrez, A.P.; Yáñez, J.M.; Fukui, S.; Swift, B.; Davidson, W.S. Genome-Wide Association Study (GWAS) for Growth Rate and Age at Sexual Maturation in Atlantic Salmon (Salmo Salar). PLoS ONE 2015, 10, e0119730. https://doi.org/10.1371/jour-nal.pone.0119730.
Moen, T.; Torgersen, J.; Santi, N.; Davidson, W.S.; Baranski, M.; Ødegård, J.; Kjøglum, S.; Velle, B.; Kent, M.; Lubieniecki, K.P.; et al. Epithelial Cadherin Determines Resistance to Infectious Pancreatic Necrosis Virus in Atlantic Salmon. Genetics 2015, 200, 1313–1326. https://doi.org/10.1534/genetics.115.175406.
Kim, O.T.P.; Nguyen, P.T.; Shoguchi, E.; Hisata, K.; Vo, T.T.B.; Inoue, J.; Shinzato, C.; Le, B.T.N.; Nishitsuji, K.; Kanda, M.; et al. A Draft Genome of the Striped Catfish, Pangasianodon hypophthalmus, for Comparative Analysis of Genes Relevant to Development and a Resource for Aquaculture Improvement. BMC Genom. 2018, 19, 733. https://doi.org/10.1186/s12864-018-5079-x.
Derakhshani, H.; Bernier, S.P.; Marko, V.A.; Surette, M.G. Completion of Draft Bacterial. Genomes by Long-Read Sequencing of Synthetic Genomic Pools. BMC Genom. 2020, 21, 519. https://doi.org/10.1186/s12864-020-06910-6.
Amarasinghe, S.L.; Su, S.; Dong, X.; Zappia, L.; Ritchie, M.E.; Gouil, Q. Opportunities and Challenges in Long-Read Sequencing Data Analysis. Genome Biol. 2020, 21, 30. https://doi.org/10.1186/s13059-020-1935-5.
Nath, S.; Shaw, D.E.; White, M.A. Improved Contiguity of the Threespine Stickleback Genome Using Long-Read Sequencing. G3 Genes Genomes Genet. 2021, 11, jkab007. https://doi.org/10.1093/g3journal/jkab007.
Pollard, M.O.; Gurdasani, D.; Mentzer, A.J.; Porter, T.; Sandhu, M.S. Long Reads: Their Purpose and Place. Hum. Mol. Genet. 2018, 27, R234–R241. https://doi.org/10.1093/hmg/ddy177.
Lin, Y.; Yuan, J.; Kolmogorov, M.; Shen, M.W.; Chaisson, M.; Pevzner, P.A. Assembly of Long Error-Prone Reads Using de Bruijn Graphs. Proc. Natl. Acad. Sci. USA 2016, 113, E8396–E8405. https://doi.org/10.1073/pnas.1604560113.
Shendure, J.; Balasubramanian, S.; Church, G.M.; Gilbert, W.; Rogers, J.; Schloss, J.A.; Waterston, R.H. DNA Sequencing at 40: Past, Present and Future. Nature 2017, 550, 345–353. https://doi.org/10.1038/nature24286.
Jain, M.; Koren, S.; Miga, K.H.; Quick, J.; Rand, A.C.; Sasani, T.A.; Tyson, J.R.; Beggs, A.D.; Dilthey, A.T.; Fiddes, I.T.; et al. Nanopore Sequencing and Assembly of a Human Genome with Ultra-Long Reads. Nat. Biotechnol. 2018, 36, 338–345. https://doi.org/10.1038/nbt.4060.
Chaisson, M.J.P.; Wilson, R.K.; Eichler, E.E. Genetic Variation and the de Novo Assembly of Human Genomes. Nat. Rev. Genet. 2015, 16, 627–640. https://doi.org/10.1038/nrg3933.
Nowak, R.M.; Jastrzębski, J.P.; Kuśmirek, W.; Sałamatin, R.; Rydzanicz, M.; Sobczyk-Kopcioł, A.; Sulima-Celińska, A.; Paukszto, Ł.; Makowczenko, K.G.; Płoski, R.; et al. Hybrid de Novo Whole-Genome Assembly and Annotation of the Model Tapeworm Hymenolepis diminuta. Sci. Data 2019, 6, 302. https://doi.org/10.1038/s41597-019-0311-3.
Walker, B.J.; Abeel, T.; Shea, T.; Priest, M.; Abouelliel, A.; Sakthikumar, S.; Cuomo, C.A.; Zeng, Q.; Wortman, J.; Young, S.K.; et al. Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement. PLoS ONE 2014, 9, e112963. https://doi.org/10.1371/journal.pone.0112963.
Hu, J.; Fan, J.; Sun, Z.; Liu, S. NextPolish: A Fast and Efficient Genome Polishing Tool for Long- Read Assembly. Bioinformatics 2020, 36, 2253–2255. https://doi.org/10.1093/bioinformatics/btz891.
Wenger, A.M.; Peluso, P.; Rowell, W.J.; Chang, P.-C.; Hall, R.J.; Concepcion, G.T.; Ebler, J.; Fungtammasan, A.; Kolesnikov, A.; Olson, N.D.; et al. Accurate Circular Consensus Long-Read Sequencing Improves Variant Detection and Assembly of a Human Genome. Nat. Biotechnol. 2019, 37, 1155–1162. https://doi.org/10.1038/s41587-019-0217-9.
Logsdon, G.A.; Vollger, M.R.; Eichler, E.E. Long-Read Human Genome Sequencing and Its Applications. Nat. Rev. Genet. 2020, 21, 597–614. https://doi.org/10.1038/s41576-020-0236-x.
Vollger, M.R.; Logsdon, G.A.; Audano, P.A.; Sulovari, A.; Porubsky, D.; Peluso, P.; Wenger, A.M.; Concepcion, G.T.; Kronenberg, Z.N.; Munson, K.M.; et al. Improved Assembly and Variant Detection of a Haploid Human Genome Using Single-molecule, High-fidelity Long Reads. Ann. Hum. Genet. 2020, 84, 125–140. https://doi.org/10.1111/ahg.12364.
Yang, X.; Zhao, X.; Qu, S.; Jia, P.; Wang, B.; Gao, S.; Xu, T.; Zhang, W.; Huang, J.; Ye, K. Haplotype-Resolved Chinese Male Genome Assembly Based on High-Fidelity Sequencing. Fundam. Res. 2022. https://doi.org/10.1016/j.fmre.2022.02.005.
Nurk, S.; Walenz, B.P.; Rhie, A.; Vollger, M.R.; Logsdon, G.A.; Grothe, R.; Miga, K.H.; Eichler, E.E.; Phillippy, A.M.; Koren, S. HiCanu: Accurate Assembly of Segmental Duplications, Satellites, and Allelic Variants from High-Fidelity Long Reads. Genome Res. 2020, 30, 1291–1305. https://doi.org/10.1101/GR.263566.120.
Di Genova, A.; Buena-Atienza, E.; Ossowski, S.; Sagot, M.-F. Efficient Hybrid de Novo Assembly of Human Genomes with WENGAN. Nat. Biotechnol. 2021, 39, 422–430. https://doi.org/10.1038/s41587-020-00747-w.
Gavrielatos, M.; Kyriakidis, K.; Spandidos, D.A.; Michalopoulos, I. Benchmarking of next and Third Generation Sequencing Technologies and Their Associated Algorithms for de Novo Genome Assembly. Mol. Med. Rep. 2021, 23, 251. https://doi.org/10.3892/mmr.2021.11890.
Wenger, A.M.; Peluso, P.; Rowell, W.J.; Chang, P.C.; Hall, R.J.; Concepcion, G.T.; Ebler, J.; Fungtammasan, A.; Kolesnikov, A.; Olson, N.D.; et al. Highly-Accurate Long-Read Sequencing Improves Variant Detection and Assembly of a Human Genome. bioRxiv 2019. https://doi.org/10.1101/519025.
Huddleston, J.; Chaisson, M.J.P.; Steinberg, K.M.; Warren, W.; Hoekzema, K.; Gordon, D.; Graves-Lindsay, T.A.; Munson, K.M.; Kronenberg, Z.N.; Vives, L.; et al. Discovery and Genotyping of Structural Variation from Long-Read Haploid Genome Sequence Data. Genome Res. 2017, 27, 677–685. https://doi.org/10.1101/gr.214007.116.
Mehrotra, S.; Goyal, V. Repetitive Sequences in Plant Nuclear DNA: Types, Distribution, Evolution and Function. Genom. Proteom. Bioinform. 2014, 12, 164–171. https://doi.org/10.1016/j.gpb.2014.07.003.
Malhis, N.; Jones, S.J.M. High Quality SNP Calling Using Illumina Data at Shallow Coverage. Bioinformatics 2010, 26, 1029–1035. https://doi.org/10.1093/bioinformatics/btq092.
Georges, M.; Charlier, C.; Hayes, B. Harnessing Genomic Information for Livestock Improvement. Nat. Rev. Genet. 2019, 20, 135– 156. https://doi.org/10.1038/s41576-018-0082-2.
Zenger, K.R.; Khatkar, M.S.; Jones, D.B.; Khalilisamani, N.; Jerry, D.R.; Raadsma, H.W. Genomic Selection in Aquaculture: Application, Limitations and Opportunities with Special Reference to Marine Shrimp and Pearl Oysters. Front. Genet. 2019, 10, 693. https://doi.org/10.3389/fgene.2018.00693.
Benevenuto, J.; Ferrão, L.F.V.; Amadeu, R.R.; Munoz, P. How Can a High-Quality Genome Assembly Help Plant Breeders? GigaScience 2019, 8, giz068. https://doi.org/10.1093/gigascience/giz068.
Wen, M.; Pan, Q.; Jouanno, E.; Montfort, J.; Zahm, M.; Cabau, C.; Klopp, C.; Iampietro, C.; Roques, C.; Bouchez, O.; et al. An Ancient Truncated Duplication of the Anti-Mullerian Hormone Receptor Type 2 Gene Is a Potential Conserved Master Sex Determinant in the Pangasiidae Catfish Family. Mol. Ecol. Resour. 2022, 1–18. https://doi.org/10.1111/1755-0998.13620.
Andrews, S. Babraham Bioinformatics-FastQC A Quality Control Tool for High Throughput Sequence Data. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/(accessed on 17 August 2019).
Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114– 2120. https://doi.org/10.1093/bioinformatics/btu170.
Marçais, G.; Kingsford, C. A Fast, Lock-Free Approach for Efficient Parallel Counting of Occurrences of k-Mers. Bioinformatics 2011, 27, 764–770. https://doi.org/10.1093/bioinformatics/btr011.
Vurture, G.W.; Sedlazeck, F.J.; Nattestad, M.; Underwood, C.J.; Fang, H.; Gurtowski, J.; Schatz, M.C. GenomeScope: Fast Reference-Free Genome Profiling from Short Reads. Bioinformatics 2017, 33, 2202–2204. https://doi.org/10.1093/bioinformatics/btx153.
Cheng, H.; Concepcion, G.T.; Feng, X.; Zhang, H.; Li, H. Haplotype-Resolved de Novo Assembly Using Phased Assembly Graphs with Hifiasm. Nat. Methods 2021, 18, 170–175. https://doi.org/10.1038/s41592-020-01056-5.
Li, H.; Durbin, R. Fast and Accurate Short Read Alignment with Burrows–Wheeler Transform. Bioinformatics 2009, 25, 1754– 1760. https://doi.org/10.1093/bioinformatics/btp324.
Ghurye, J.; Rhie, A.; Walenz, B.P.; Schmitt, A.; Selvaraj, S.; Pop, M.; Phillippy, A.M.; Koren, S. Integrating Hi-C Links with Assembly Graphs for Chromosome-Scale Assembly. PLoS Comput. Biol. 2019, 15, e1007273. https://doi.org/10.1371/journal.pcbi.1007273.
Burton, J.N.; Adey, A.; Patwardhan, R.P.; Qiu, R.; Kitzman, J.O.; Shendure, J. Chromosome-Scale Scaffolding of de Novo Genome Assemblies Based on Chromatin Interactions. Nat. Biotechnol. 2013, 31, 1119–1125. https://doi.org/10.1038/nbt.2727.
Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality Assessment Tool for Genome Assemblies. Bioinformatics 2013, 29, 1072–1075. https://doi.org/10.1093/bioinformatics/btt086.
Kurtz, S.; Phillippy, A.; Delcher, A.L.; Smoot, M.; Shumway, M.; Antonescu, C.; Salzberg, S.L. Versatile and Open Software for Comparing Large Genomes. Genome Biol. 2004, 5, R12. https://doi.org/10.1186/gb-2004-5-2-r12.
Tarailo-Graovac, M.; Chen, N. Using RepeatMasker to Identify Repetitive Elements in Genomic Sequences. Curr. Protoc. Bioinform. 2009, 25, 4.10.1–4.10.14. https://doi.org/10.1002/0471250953.bi0410s25.
Flynn, J.M.; Hubley, R.; Goubert, C.; Rosen, J.; Clark, A.G.; Feschotte, C.; Smit, A.F. RepeatModeler2 for Automated Genomic Discovery of Transposable Element Families. Proc. Natl. Acad. Sci. USA 2020, 117, 9451–9457. https://doi.org/10.1073/pnas.1921046117.
Thiel, T.; Michalek, W.; Varshney, R.; Graner, A. Exploiting EST Databases for the Development and Characterization of Gene- Derived SSR-Markers in Barley (Hordeum Vulgare L.). Theor. Appl. Genet. 2003, 106, 411–422. https://doi.org/10.1007/s00122- 002-1031-0.
Tang, B.; Wang, Z.; Liu, Q.; Wang, Z.; Ren, Y.; Guo, H.; Qi, T.; Li, Y.; Zhang, H.; Jiang, S.; et al. Chromosome-Level Genome Assembly of Paralithodes Platypus Provides Insights into Evolution and Adaptation of King Crabs. Mol. Ecol. Resour. 2021, 21, 511–525. https://doi.org/10.1111/1755-0998.13266.
Berlin, K.; Koren, S.; Chin, C.-S.; Drake, J.P.; Landolin, J.M.; Phillippy, A.M. Assembling Large Genomes with Single-Molecule Sequencing and Locality-Sensitive Hashing. Nat. Biotechnol. 2015, 33, 623–630. https://doi.org/10.1038/nbt.3238.
Molina-Mora, J.A.; Campos-Sánchez, R.; Rodríguez, C.; Shi, L.; García, F. High Quality 3C de Novo Assembly and Annotation of a Multidrug Resistant ST-111 Pseudomonas Aeruginosa Genome: Benchmark of Hybrid and Non-Hybrid Assemblers. Sci. Rep. 2020, 10, 1392. https://doi.org/10.1038/s41598-020-58319-6.
Ellis, E.A.; Storer, C.G.; Kawahara, A.Y. De Novo Genome Assemblies of Butterflies. GigaScience 2021, 10, giab041. https://doi.org/10.1093/gigascience/giab041.
Sreeputhorn, K.; Mangumphan, K.; Muanphet, B.; Tanomtong, A.; Supiwong, W.; Kaewmad, P. The First Report on Chromosome Analysis of F1 Hybrid Catfish: Mekong Giant Catfish (Pangasianodon gigas) × Striped Catfish (Pangasianodon hypophthalmus) and Spot Pangasius (Pangasius larnaudii) × Pangasianodon Hypophthalmus (Siluriformes, pangasiidae). Cytologia 2017, 82, 457– 463. https://doi.org/10.1508/cytologia.82.457.
Sharma, P.; Al-Dossary, O.; Alsubaie, B.; Al-Mssallem, I.; Nath, O.; Mitter, N.; Margarido, G.R.A.; Topp, B.; Murigneux, V.; Kharabian Masouleh, A.; et al. Improvements in the Sequencing and Assembly of Plant Genomes. Gigabyte 2021, 2021, 1–10. https://doi.org/10.46471/gigabyte.24.
Chin, C.-S.; Khalak, A. Human Genome Assembly in 100 Minutes. bioRxiv 2019, 705616. https://doi.org/10.1101/705616.
Driguez, P.; Bougouffa, S.; Carty, K.; Putra, A.; Jabbari, K.; Reddy, M.; Soppe, R.; Cheung, M.S.; Fukasawa, Y.; Ermini, L. LeafGo: Leaf to Genome, a Quick Workflow to Produce High-Quality de Novo Plant Genomes Using Long-Read Sequencing Technology. Genome Biol. 2021, 22, 256. https://doi.org/10.1186/s13059-021-02475-z.
Zimin, A.V.; Salzberg, S.L. The SAMBA Tool Uses Long Reads to Improve the Contiguity of Genome Assemblies. PLoS Comput. Biol. 2022, 18, e1009860. https://doi.org/10.1371/journal.pcbi.1009860.
Austin, C.M.; Tan, M.H.; Harrisson, K.A.; Lee, Y.P.; Croft, L.J.; Sunnucks, P.; Pavlova, A.; Gan, H.M. De Novo Genome Assembly and Annotation of Australia’s Largest Freshwater Fish, the Murray Cod (Maccullochella peelii), from Illumina and Nanopore Sequencing Read. GigaScience 2017, 6, gix063. https://doi.org/10.1093/gigascience/gix063.
Howe, K.; Clark, M.D.; Torroja, C.F.; Torrance, J.; Berthelot, C.; Muffato, M.; Collins, J.E.; Humphray, S.; McLaren, K.; Matthews, L.; et al. The Zebrafish Reference Genome Sequence and Its Relationship to the Human Genome. Nature 2013, 496, 498–503. https://doi.org/10.1038/nature12111.
Gao, G.; Magadan, S.; Waldbieser, G.C.; Youngblood, R.C.; Wheeler, P.A.; Scheffler, B.E.; Thorgaard, G.H.; Palti, Y. A Long Reads-Based de-Novo Assembly of the Genome of the Arlee Homozygous Line Reveals Chromosomal Rearrangements in Rainbow Trout. G3 Genes Genomes Genet. 2021, 11, jkab052. https://doi.org/10.1093/g3journal/jkab052.